Publications



Metal Catalyst

Most Cited
1.

Enantioselective Decarboxylative Arylation of α-Amino Acids via the Merger of Photoredox and Nickel Catalysis

Zuo, Z.; Cong, H.; Li, W.; Choi, J.; Fu, G. C.; MacMillan, D. W. C.
J. Am. Chem. Soc. 2016. 138 (6), 1832-1835. DOI: 10.1021/jacs.5b13211
  • Group: MacMillan at Princeton University
  • Catalyst: Iridium (photocatalyst), Nickel
  • Model: H150 Blue


Featured
2.

Photocatalytic C-H activation and the subtle role of chlorine radical complexation in reactivity

Yang Q.; Wang Y. H.; Qiao Y.; Gau M.; Carroll P. J.; Walsh P. J.; Schelter E. J.
Science 2021. 372 (6544), 847-852. DOI: 10.1126/science.abd8408
  • Group: Schelter at University of Pennsylvania
  • Catalyst: Cerium (photocatalyst)
  • Model: PR160-467, PR160-390

Figure S2. A picture of the photoredox setup used in batch reactions.

Featured
3.

Nucleophilic (Radio)Fluorination of Redox-Active Esters via Radical-Polar Crossover Enabled by Photoredox Catalysis

Webb, E. W.; Park, J. B.; Cole, E. L.; Donnelly, D. J.; Bonacorsi, S. J.; Ewing, W. R.; Doyle, A. G.
J. Am. Chem. Soc. 2020. 142 (20), 9493-9500. DOI: 10.1021/jacs.0c03125
  • Group: Doyle at University of California, Los Angeles (UCLA) (previously Princeton University)
  • Catalyst: Iridium (photocatalyst)
  • Model: H150 Blue, PR160-440

Figure S1. Set-up for Screening and Isolation Scale Fluorination Reactions. Left: Isolation (left) and screening scale (right) in photocatalysis set up. Right: Screening-multiple vials per lamp, isolation-one vial per lamp.

Featured
4.

Alcohols as Latent Coupling Fragments for Metallaphotoredox Catalysis: sp3–sp2 Cross-Coupling of Oxalates with Aryl Halides

Zhang, X.; MacMillan, D. W. C.
J. Am. Chem. Soc. 2016. 138 (42), 13862-13865. DOI: 10.1021/jacs.6b09533
  • Group: MacMillan at Princeton University
  • Catalyst: Iridium (photocatalyst), Nickel
  • Model: H150 Blue

Figure S1 Top view. Four 34 W Kessil KSH150B Blue LED Grow Light 150 are positioned on all four sides of the box covered with aluminum foil.
Figure S2 Set-up for Screening and Isolation Scale Fluorination Reactions. Left: Isolation (left) and screening scale (right) in photocatalysis set up. Right: Screening-multiple vials per lamp, isolation-one vial per lamp.

Most Cited
5.

Direct C(sp3)–H Cross Coupling Enabled by Catalytic Generation of Chlorine Radicals

Shields , B. J.; Doyle, A. G.
J. Am. Chem. Soc. 2016. 138 (39), 12719-12722. DOI: 10.1021/jacs.6b08397
  • Group: Doyle at University of California, Los Angeles (UCLA) (previously Princeton University)
  • Catalyst: Iridium (photocatalyst), Nickel
  • Model: H150 Blue

6.

Photoacid-catalyzed acetalization of carbonyls with alcohols

Saway, J.; Pierrea, A. F.; Badillo, J. J.
Org. Biomol. Chem. 2022, 20, 6188-6192. DOI: 10.1039/D2OB00435F
  • Group: Badillo at Seton Hall University
  • Catalyst: 6-bromo-2-naphthol, Iridium, Ruthenium (photocatalyst), Nickel
  • Model: A160WE Tuna Blue

7.

Transfer of photochemistry from UV to visible: An expedient access to a bridged pyrrolidine

Lorthioir, O.; Corner, T.; Demanze, S.; Greenwood, R.; Proctor, K.; Stokes, S.; Turner, P.
Tetrahedron Lett. 2021. 84, 153447. DOI: 10.1016/j.tetlet.2021.153447

8.

Visible-Light Induced C(sp2)−H Amidation with an Aryl–Alkyl σ-Bond Relocation via Redox-Neutral Radical–Polar Crossover

Keum, H.; Jung, H.; Jeong, J.; Kim,D.; Chang S.
Angew. Chem. Int. Ed. 2021. 60 (48), 25235-25240. DOI: 10.1002/anie.202108775
  • Group: Chang at Korea Advanced Institute of Science and Technology (KAIST)
  • Catalyst: Iridium (photocatalyst)
  • Model: PR160L-456

9.

Metallaphotoredox-enabled deoxygenative arylation of alcohols

Dong, Z.; MacMillan, D. W. C.
Nature 2021. 598, 451–456. DOI: 10.1038/s41586-021-03920-6
  • Group: MacMillan at Princeton University
  • Catalyst: Iridium (photocatalyst), Nickel
  • Model: A160WE Tuna Blue

10.

PCET-Based Ligand Limits Charge Recombination with an Ir(III) Photoredox Catalyst

Sayre, H.; Ripberger, H. H.; Odella, E.; Zieleniewska, A.; Heredia, D. A.; Rumbles, G.; Scholes, G. D.; Moore, T. A.; Moore, A. L.; Knowles, R. R.
J. Am. Chem. Soc. 2021. 143 (33), 13034-13043. DOI: 10.1021/jacs.1c01701
  • Group: Knowles at Princeton University
  • Catalyst: Iridium (photocatalyst)
  • Model: PR160-440, PR160-456

11.

Depolymerization of Hydroxylated Polymers via Light-Driven C–C Bond Cleavage

Nguyen, S. T.; McLoughlin, E. A.; Cox, J. H.; Fors, B. P.; Knowles, R. R.
J. Am. Chem. Soc. 2021. 143 (31), 12268–12277. DOI: 10.1021/jacs.1c05330
  • Group: Knowles at Princeton University
  • Catalyst: Iridium, Acridinium (photocatalysts)
  • Model: H150 Blue

12.

A Nanocrystal Catalyst Incorporating a Surface Bound Transition Metal to Induce Photocatalytic Sequential Electron Transfer Events

Martin, J. S.; Zeng, X.; Chen, X.; Miller, C.; Han, C.; Lin, Y.; Yamamoto, N.; Wang, X.;
J. Am. Chem. Soc. 2021. 143 (30), 11361-11369. DOI: 10.1021/jacs.1c00503
  • Group: Yan at San Diego State University
  • Catalyst: Copper exchanged lead-halide perovskite nanocrystal (Cu-CsPbBr3) (photocatalyst)
  • Model: PR160-456

13.

Bringing Earth-Abundant Plasmonic Catalysis to Light: Gram-Scale Mechanochemical Synthesis and Tuning of Activity by Dual Excitation of Antenna and Reactor Sites

Quiroz, J.; de Oliveira, P. F. M.; Shetty, S.; Oropeza, F. E.; de la Peña O’Shea, V. A.; Rodrigues, L. C. V.; Rodrigues, M. P. de S.; Torresi, R. M.; Emmerling, F.; Camargo, P. H. C.
ACS Sustain. Chem. Eng. 2021. 9 (29), 9750-9760. DOI: 10.1021/acssuschemeng.1c02063
  • Group: Camargo at University of Helsinki
  • Catalyst: Plasmonic Au/MoO3_P (photocatalyst)
  • Model: PR160L-525, PR160L-740-C

14.

Visible light enables catalytic formation of weak chemical bonds with molecular hydrogen

Park, Y.; Kim, S.; Tian, L.; Zhong, H.; Scholes, G. D.; Chirik, P. J.
Nat. Chem. 2021. 13, 969–976. DOI: 10.1038/s41557-021-00732-z
  • Group: Chirik at Princeton University
  • Catalyst: Iridium hydride (photocatalyst)
  • Model: H150 Blue

15.

Pyridylphosphonium Salts as Alternatives to Cyanopyridines in Radical-Radical Coupling Reactions

Greenwood, J. W.; Boyle, B. T.; McNally, A.
Chem. Sci. 2021. 12, 10538-10543. DOI: 10.1039/D1SC02324A
  • Group: McNally at Colorado State University
  • Catalyst: Iridium, 3DPAFIPN, [Mes-Acr]BF4 (photocatalyst)
  • Model: PR160-456

16.

Photoinduced copper-catalysed asymmetric amidation via ligand cooperativity

Chen, C.; Peters, J.C.; Fu, G.C.
Nature 2021. 596, 250–256. DOI: 10.1038/s41586-021-03730-w
  • Group: Fu at California Institute of Technology
  • Catalyst: Copper/bisphosphine/phenoxide complex (photocatalyst)
  • Model: PR160-440

17.

Asymmetric benzylic C(sp3)−H acylation via dual nickel and photoredox catalysis

Huan, L.; Shu, X.; Zu, W.; Zhong, D.; Huo, H.
Nat. Commun. 2021. 12 (3536). DOI: 10.1038/s41467-021-23887-2
  • Group: Huo at Xiamen University
  • Catalyst: Iridium (photocatalyst), Nickel
  • Model: PR160L-427

18.

Iron-Catalyzed Photoinduced LMCT: A 1° C–H Abstraction Enables Skeletal Rearrangements and C(sp3)–H Alkylation

Kang, Y. C.; Treacy, S. M.; Rovis, T.
ACS Catal. 2021. 11 (12), 7442-7449. DOI: 10.1021/acscatal.1c02285
  • Group: Rovis at Columbia University
  • Catalyst: Iron FeCl3 (photocatalyst)
  • Model: PR160-440

19.

Alkylation of the α-amino C–H bonds of anilines photocatalyzed by a DMEDA-Cu-benzophenone complex: reaction scope and mechanistic studies

Baptiste Abadie, Gediminas Jonusauskas, Nathan Mcclenaghan, Patrick Toullec, Jean-Marc Vincent
Org. Biomol. Chem. 2021. 19 (26), 5800-5805. DOI: 10.1039/D1OB00960E
  • Group: Toullec & Vincent at University of Bordeaux
  • Catalyst: DMEDA-Cu-benzophenone (photocatalyst)
  • Model: PR160L-370, PR160L-390

20.

Isotope Effects and the Mechanism of Photoredox-Promoted [2 + 2] Cycloadditions of Enones

Kuan, K.-Y.; Singleton, D. A.
J. Org. Chem. 2021. 86 (9), 6305–6313. DOI: 10.1021/acs.joc.1c00099
  • Group: Singleton at Texas A&M University
  • Catalyst: Ruthenium (photocatalyst)
  • Model: H150 B

21.

Construction of Complex Cyclobutane Building Blocks by Photosensitized [2 + 2] Cycloaddition of Vinyl Boronate Esters

Scholz, S. O.; Kidd, J. B.; Capaldo, L.; Flikweert, N. E.; Littlefield, R. M.; Yoon, T. P.
Org. Lett. 2021. 23 (9), 3496-3501. DOI: 10.1021/acs.orglett.1c00938
  • Group: Yoon at University of Wisconsin–Madison
  • Catalyst: Iridium (photocatalyst)
  • Model: H150-B, PR160-427

22.

Diaryl Ether Formation Merging Photoredox and Nickel Catalysis

Liu, L.; Nevado, C.
Organometallics 2021. 40 (14), 2188-2193. DOI: 10.1021/acs.organomet.1c00018
  • Group: Nevado at University of Zurich
  • Catalyst: Nickel, Iridium, 4CzIPN (photocatalysts)
  • Model: H150 Blue

23.

Visible Light-Induced Pd-Catalyzed Alkyl-Heck Reaction of Oximes

Kvasovs, N.; Iziumchenko, V.; Palchykov, V.; Gevorgyan, V.
ACS Catal. 2021. 11 (6), 3749-3754. DOI: 10.1021/acscatal.1c00267
  • Group: Gevorgyan at University of Texas at Dallas
  • Catalyst: Palladium (photocatalyst)
  • Model: H150 Blue

24.

Intermolecular Crossed [2 + 2] Cycloaddition Promoted by Visible-Light Triplet Photosensitization: Expedient Access to Polysubstituted 2-Oxaspiro[3.3]heptanes

Murray, P. R. D.; Bussink, W. M. M.; Davies, G. H. M.; van der Mei, F. W.; Antropow, A. H.; Edwards, J. T.; D’Agostino, L. A.; Ellis, J. M.; Hamann, L. G.; Romanov-Michailidis, F.; Knowles, R. R.
J. Am. Chem. Soc. 2021. 143 (10), 4055-4063. DOI: 10.1021/jacs.1c01173
  • Group: Knowles at Princeton University
  • Catalyst: Iridium (photocatalyst)
  • Model: PR160-440

25.

Diastereoselective and Stereodivergent Synthesis of 2-Cinnamylpyrrolines Enabled by Photoredox-Catalyzed Iminoalkenylation of Alkenes

Shen, X.; Huang, C.; Yuan, X.-A.; Yu, S.
Angew. Chem. Int. Ed. 2021. 60, 9672. DOI: 10.1002/anie.202016941
  • Group: Yuan at Qufu Normal University & Yu at Nanjing University
  • Catalyst: Iridium (photocatalyst)
  • Model: PR160-456

26.

Photoredox catalysis on unactivated substrates with strongly reducing iridium photosensitizers

Shon, J.-H.; Kim, D.; Rathnayake, M. D.; Sittel, S.; Weaver, J.; Teets, T. S.
Chem. Sci., 2021. 12, 4069-4078. DOI: 10.1039/D0SC06306A
  • Group: Teets at University of Houston
  • Catalyst: Iridium (photocatalyst)
  • Model: H150 Blue

27.

Photoredox Nickel-Catalyzed C–S Cross-Coupling: Mechanism, Kinetics, and Generalization

Qin, Y.; Sun, R.; Gianoulis, N. P.; Nocera, D. G.
J. Am. Chem. Soc. 2021. 143 (4), 2005–2015. DOI: 10.1021/jacs.0c11937.
  • Group: Nocera at Harvard University
  • Catalyst: Iridium (photocatalyst), Nickel
  • Model: A160WE Tuna Blue

28.

Minimization of Back-Electron Transfer Enables the Elusive sp3 C-H Functionalization of Secondary Anilines

Zhao, H.; Leonori, D.
ngew. Chem., Int. Ed. Engl. 2021. 60 (14), 7669-7674. DOI: 10.1002/anie.202100051
  • Group: Leonori at University of Manchester
  • Catalyst: Iridium (photocatalyst)
  • Model: PR160-440

29.

Visible-Light-Enhanced Cobalt-Catalyzed Hydrogenation: Switchable Catalysis Enabled by Divergence between Thermal and Photochemical Pathways

Mendelsohn, L. N.; MacNeil, C. S.; Tian, L.; Park, Y.; Scholes, G. D.; Chirik, P. J.
ACS Catal. 2021. 11 (3), 1351-1360. DOI: 10.1021/acscatal.0c05136
  • Group: Chirik at Princeton University
  • Catalyst: Cobalt (photocatalyst)
  • Model: H150 Blue

Featured
30.

Development of a Platform for Near-Infrared Photoredox Catalysis

Ravetz, B. D.; Tay, N. E. S.; Joe, C. L.; Sezen-Edmonds, M.; Schmidt, M. A.; Tan, Y.; Janey, J. M.; Eastgate, M. D.; Rovis. T.
ACS Cent. Sci. 2020. 6 (11), 2053-2059. DOI: 10.1021/acscentsci.0c00948
  • Group: Rovis at Columbia University
  • Catalyst: Osmium Os(II) (photocatalyst)
  • Model: PR160L-456, PR160L-660-C, PR160L-740-C

31.

Photoredox-Catalyzed Deaminative Alkylation via C–N Bond Activation of Primary Amines

Ashley, M. A.; Rovis, T.
J. Am. Chem. Soc. 2020. 142 (43), 18310-18316. DOI: 10.1021/jacs.0c08595
  • Group: Rovis at Columbia University
  • Catalyst: Iridium (photocatalyst)
  • Model: PR160-427

32.

C(sp3)–H Bond Acylation with N-Acyl Imides under Photoredox/ Nickel Dual Catalysis

Kerackian, T.; Reina, A.; Krachko, T.; Boddaert, H.; Bouyssi, D.; Monteiro, N.; Amgoune, A.
Synlett 2021. 32 (15), 1531-1536. DOI: 10.1055/s-0040-1707301
  • Group: Amgoune at Claude Bernard University Lyon 1
  • Catalyst: Iridium (photocatalyst), Nickel
  • Model: A160WE Tuna Blue

33.

Synthesis of azetidines via visible-light-mediated intermolecular [2+2] photocycloadditions

Becker, M.R.; Wearing, E.R.; Schindler, C.S.
Nat. Chem. 2020. 12, 898–905. DOI: 10.1038/s41557-020-0541-1
  • Group: Schindler at University of Michigan
  • Catalyst: Iridium (photocatalyst)
  • Model: PR160-427

34.

Visible-Light-Enabled Paternò–Büchi Reaction via Triplet Energy Transfer for the Synthesis of Oxetanes

Rykaczewski, K. A.; Schindler, C. S.
Org. Lett. 2020. 22 (16), 6516-6519. DOI: 10.1021/acs.orglett.0c02316
  • Group: Schindler at University of Michigan
  • Catalyst: Iridium (photocatalyst)
  • Model: PR160-456

35.

Mechanistic Analysis of Metallaphotoredox C–N Coupling: Photocatalysis Initiates and Perpetuates Ni(I)/Ni(III) Coupling Activity

Till, N. A.; Tian, L.; Dong, Z.; Scholes, G. D.; MacMillan, D. W. C.
J. Am. Chem. Soc. 2020. 142 (37), 15830-15841. DOI: 10.1021/jacs.0c05901
  • Group: MacMillan at Princeton University
  • Catalyst:Copper, Iridium (photocatalyst)
  • Model: A160WE Tuna Blue

Featured
36.

Aminoalkyl radicals as halogen-atom transfer agents for activation of alkyl and aryl halides

Constantin, T.; Zanini, M.; Regni, A.; Sheikh, N. S.; Juliá, F.; Leonori, D.
Science 2020. 467 (6481), 1021-1026. DOI: 10.1126/science.aba2419
  • Group: Leonori at University of Manchester
  • Catalyst: Iridium, 4CzIPN (photocatalysts)
  • Model: PR160-440, PR160-370

37.

A Metallaphotoredox Strategy for the Cross-Electrophile Coupling of α-Chloro Carbonyls with Aryl Halides

Chen. T. Q.; MacMillan, D. W. C.
Angew. Chem. Int. Ed. 2019. 58, 14584. DOI: 10.1002/anie.201909072
  • Group: MacMillan at Princeton University
  • Catalyst: Iridium (photocatalyst), Nickel
  • Model: A160WE Tuna Blue

Most Cited
38.

Enantioselective [2+2] Cycloadditions of Cinnamate Esters: Generalizing Lewis Acid Catalysis of Triplet Energy Transfer

Daub, M. E.; Jung, H.; Lee, B. J.; Won, J.; Baik, M.-H.; Yoon, T. P.
J. Am. Chem. Soc. 2019. 141 (24), 9543–9547. DOI: 10.1021/acs.oprd.8b00018
  • Group: Yoon at University of Wisconsin−Madison and Baik at Korea Advanced Institute of Science and Technology (KAIST)
  • Catalyst: Iridium (photocatalysts)
  • Model: H150 Blue

Most Cited
39.

Arylsulfonylacetamides as bifunctional reagents for alkene aminoarylation

Monos, T. M.; McAtee, R. C.; Stephenson, C. R. J.
Science 2018. 361 (6409), 1369-1373. DOI: 10.1126/science.aat2117
  • Group: Stephenson at University of Michigan
  • Catalyst: Iridium (photocatalysts)
  • Model: H150 Blue

40.

Photoredox Iridium–Nickel Dual-Catalyzed Decarboxylative Arylation Cross-Coupling: From Batch to Continuous Flow via Self-Optimizing Segmented Flow Reactor

Hsieh, H.-W.; Coley, C. W.; Baumgartner, L. M.; Jensen, K. F.; obinson, R. I.
Org. Process Res. Dev. 2018. 22 (4), 542-550. DOI: 10.1021/acs.oprd.8b00018

Most Cited
41.

Visible Light-Induced Room-Temperature Heck Reaction of Functionalized Alkyl Halides with Vinyl Arenes/Heteroarenes

Kurandina, D.; Parasram, M.; Gevorgyan, V.
Angew. Chem. Int. Ed. 2017. 56, 14212. DOI: 10.1002/anie.201706554
  • Group: Gevorgyan at University of Texas at Dallas
  • Catalyst: Palladium (photocatalyst)
  • Model: H150 Blue

Most Cited
42.

Enabling the Cross-Coupling of Tertiary Organoboron Nucleophiles through Radical-Mediated Alkyl Transfer

Primer, D. N.; Molander, G. A.
J Am Chem Soc. 2017. 139 (29), 9847-9850. DOI: 10.1021/jacs.7b06288
  • Group: Molande at University of Pennsylvania
  • Catalyst: Iridium (photocatalyst), Nickel
  • Model: H150 Blue

Most Cited
43.

Amide-directed photoredox-catalysed C-C bond formation at unactivated sp3 C-H bonds

Chu, J.C.; Rovis, T.
Nature 2016. 139 (29), 9847-9850. DOI: 10.1021/jacs.7b06288
  • Group: Rovis at Columbia University
  • Catalyst: Iridium (photocatalyst)
  • Model: H150 Blue

Most Cited
44.

Catalytic Olefin Hydroamidation Enabled by Proton-Coupled Electron Transfer

Miller, D. C.; Choi, G. J.; Orbe, H. S.; Knowles, R. R.
J Am Chem Soc. 2015. 137 (42), 13492-13495. DOI: 10.1021/jacs.5b09671
  • Group: Knowles at Princeton University
  • Catalyst: Iridium (photocatalyst)
  • Model: H150 Blue

Organic Catalyst

Most Cited
1.

Aminoalkyl radicals as halogen-atom transfer agents for activation of alkyl and aryl halides

Constantin, T.; Zanini, M.; Regni, A.; Sheikh, N. S.; Juliá, F.; Leonori, D.
Science 2020. 367 (6481), 1021-1026. DOI: 10.1126/science.aba2419
  • Group: Leonori at University of Manchester
  • Catalyst: 4CzIPN ,Iridium (photocatalysts)
  • Model: PR160-440, PR160-370

Figure S1.

Featured
2.

The merger of decatungstate and copper catalysis to enable aliphatic C(sp3)–H trifluoromethylation

Sarver, P.J.; Bacauanu, V.; Schultz, D.M.; DiRocco, D.A.; Lam, Y.H.; Sherer, E.C.; MacMillan, D.W.C.
Nat. Chem. 2020. 12, 459–467. DOI: 10.1038/s41557-020-0436-1
  • Group: MacMillan at Princeton University
  • Catalyst:Copper, Decatungstate (photocatalyst), Copper
  • Model: PR160-390

Supplementary Figure 3. Example of reaction setup (0.5 mmol scale).
Supplementary Figure 5. UV light-shielding amber acrylic box used during reactions.

Featured
3.

Metal-free photoinduced C(sp3)-H borylation of alkanes

Shu, C.; Noble, A.; Aggarwal, V. K.
Nature 2020. 586 (7831), 714-719. DOI: 10.1038/s41586-020-2831-6
  • Group: Aggarwal at University of Bristol
  • Catalyst: ClB (photocatalyst)
  • Model: PR160L-390

Fig. S1. Photochemical set-up
Fig. S4. Scale-up reaction set-up

Featured
4.

Organocatalytic Approach to Photochemical Lignin Fragmentation

Yang, C.; Kärkäs, M. D.; Magallanes, G.; Chan, K.; Stephenson, C. R. J.
Org. Lett. 2020. 22 (20), 8082-8085. DOI: 10.1021/acs.orglett.0c03029
  • Group: Stephenson at University of Michigan
  • Catalyst: PhPTH (photocatalyst)
  • Model: PR160L-390

Figure S2. Reaction setup of condition A (left) and condition B (right)

Featured
5.

Polysulfide Anions as Visible Light Photoredox Catalysts for Aryl Cross-Couplings

Li, H.; Tang, X.; Pang, J. H.; Wu, X.; Yeow, E. K. L.; Wu, J.; Chiba, S.
J. Am. Chem. Soc. 2021. 143 (1), 481-487. DOI: 10.1021/jacs.0c11968
  • Group: Chiba at Nanyang Technological University
  • Catalyst: Tetrasulfide dianions (S42–) (photocatalyst)
  • Model: PR160-640-C, PR160-525, PR160-456, PR160-440, PR160-427, PR160-390

Figure S2. Reaction set-up in batch. A. The batch reaction setup. B. The batch reaction set up with light irradiation.

6.

Photocatalyzed Oxidative Decarboxylation Forming Aminovinylcysteine Containing Peptides

Kumashiro, M.; Ohsawa, K.; Doi, T.
Catalysts 2022, 12, 1615. DOI: 10.3390/catal12121615
  • Group: Doi at Tohoku University
  • Catalyst: eosin Y-Na2 (photocatalyst)
  • Model: A160WE Tuna Blue

Figure S1. Experimental setup for photocatalyzed oxidative decarboxylation.

7.

A One-Pot Approach for Bio-Based Arylamines via a Combined Photooxidative Dearomatization-Rearomatization Strategy

Afanasenko, A.; Kavun, A.; Thomas, D.; Li, C.-J.
Chem. Eur. J. 2022, 28, e202200309. DOI: 10.1002/chem.202200309
  • Group: Li at McGill University
  • Catalyst: 1,8-HOAQ (photocatalyst)
  • Model: PR160L-427, PR160L-440

Figure S1. Pictures of reaction setup.

8.

Photoacid-catalyzed acetalization of carbonyls with alcohols

Saway, J.; Pierrea, A. F.; Badillo, J. J.
Org. Biomol. Chem. 2022, 20, 6188-6192. DOI: 10.1039/D2OB00435F
  • Group: Badillo at Seton Hall University
  • Catalyst: 6-bromo-2-naphthol, Iridium, Ruthenium(photocatalysts)
  • Model: A160WE Tuna Blue

Figure S20. General reaction setup.

9.

Photoacid-Catalyzed Friedel–Crafts Arylation of Carbonyls

Salem, Z. M.; Saway, J.; Badillo, J. J.
Org. Lett. 2019, 21 (21), 8528-8532. DOI: 10.1021/acs.orglett.9b02841
  • Group: Badillo at Seton Hall University
  • Catalyst: Schreiner’s thiourea (photocatalyst)
  • Model: PR160-370, A160WE Tuna Blue

10.

Radical Perfluoroalkylation Enabled by a Catalytically Generated Halogen Bonding Complex and Visible Light Irradiation

Tasnim, T.; Ryan, C.; Christensen, M. L.; Fennell, C. J.; Pitre, S. P.
Org. Lett. 2022. 24 (1), 446–450. DOI: 10.1021/acs.orglett.1c04139
  • Group: Pitre at Oklahoma State University
  • Catalyst: Ditertbutyl Hydroquinone (DTHQ) (photocatalyst)
  • Model: A160WE Tuna Sun

11.

Development of a Quinolinium/Cobaloxime Dual Photocatalytic System for Oxidative C–C Cross-Couplings via H2 Release

Li, J.; Huang, C.-Y.; Han, J.-T.; Li, C.-J.
ACS Catalysis 2021. 11 (22), 14148-14158. DOI: 10.1021/acscatal.1c04073
  • Group: Li at McGill University
  • Catalyst: DPQN 2,4-di-OMe (photocatalyst), cobaloxime
  • Model: PR160L-390

12.

Late-Stage N-Me Selective Arylation of Trialkylamines Enabled by Ni/Photoredox Dual Catalysis

Shen, Y.; Rovis, T.
J. Am. Chem. Soc. 2021. 143 (40), 16364-16369. DOI: 10.1021/jacs.1c08157
  • Group: Rovis at Columbia University
  • Catalyst: 4CzIPN (photocatalyst), Nickel
  • Model: PR160-440

13.

Ni/Photoredox-Catalyzed Enantioselective Cross-Electrophile Coupling of Styrene Oxides with Aryl Iodides

Lau, S. H.; Borden, M. A.; Steiman, T. J.; Wang, L. S.; Parasram, M.; Doyle, A. G.
J. Am. Chem. Soc. 2021. 143 (38), 15873-15881. DOI: 10.1021/jacs.1c08105
  • Group: Doyle at University of California, Los Angeles (UCLA) (previously Princeton University)
  • Catalyst: 4CzIPN (photocatalyst), Nickel
  • Model: PR160-427

14.

Photoredox α-Arylation of Carbonyl Compounds

Hossain, M. M.; Shaikh, A.; Moutet, J.; Gianetti, T.
ChemRxiv 2021. Doi:10.33774/chemrxiv-2021-gsq6s-v2
This content is an early or alternative research output and has not been peer-reviewed at the time of posting.
  • Group: Gianetti at University of Arizona
  • Catalyst: Acridinium (photocatalyst)
  • Model: PR160L-518-C, PR160L-467

15.

Unveiling Extreme Photoreduction Potentials of Donor–Acceptor Cyanoarenes to Access Aryl Radicals from Aryl Chlorides

Xu, J.; Cao, J.; Wu, X.; Wang, H.; Yang, X.; Tang, X.; Toh, R.W.; Zhou, R.; Yeow, E.K.L.; and Wu, J.
J. Am. Chem. Soc. 2021. 143(33), 13266–13273. DOI: 10.1021/jacs.1c05994
  • Group: Zhou at Taiyuan University of Technology & Wu at National University of Singapore
  • Catalyst: 3CzEPAIPN (photocatalyst)
  • Model: PR160L-456

16.

Depolymerization of Hydroxylated Polymers via Light-Driven C–C Bond Cleavage

Nguyen, S. T.; McLoughlin, E. A.; Cox, J. H.; Fors, B. P.; Knowles, R. R.
J. Am. Chem. Soc. 2021. 143, 31, 12268–12277. DOI: 10.1021/jacs.1c05330
  • Group: Knowles at Princeton University
  • Catalyst: Iridium, Acridinium (photocatalysts)
  • Model: H150 Blue

17.

Synthesis of CF3-Containing Spirocyclic Indolines via a Red-Light-Mediated Trifluoromethylation/Dearomatization Cascade

Mei, L.; Moutet, J.; Stull, S. M.; Gianetti, T.L.
J. Org. Chem. 2021. 86 (15), 10640-10653. DOI: 10.1021/acs.joc.1c01313
  • Group: Gianetti at University of Arizona
  • Catalyst: Pr-DMQA (photocatalyst)
  • Model: PR160-640-C

18.

From Photoredox Catalysis to the Direct Excitation of EthynylBenziodoXolones: Accessing Alkynylated Quaternary Carbons from Alcohols via Oxalates

Amos, S. G. E.; Cavalli, D.; Le Vaillant, F.; Waser, J.
ChemRxiv 2021.. DOI: 10.33774/chemrxiv-2021-56f12
This content is a preprint and has not been peer-reviewed.
  • Group: Waser at Ecole polytechnique fédérale de Lausanne (EPFL)
  • Catalyst: 4CzIPN (photocatalyst)
  • Model: PR160L-440

19.

Pyridylphosphonium Salts as Alternatives to Cyanopyridines in Radical-Radical Coupling Reactions

Greenwood, J. W.; Boyle, B. T.; McNally, A.
Chem. Sci. 2021. 12, 10538-10543. DOI: 10.1039/D1SC02324A
  • Group: McNally at Colorado State University
  • Catalyst: 3DPAFIPN, [Mes-Acr]BF4, Iridium (photocatalysts)
  • Model: PR160-456

20.

Site-selective tyrosine bioconjugation via photoredox catalysis for native-to-bioorthogonal protein transformation

Li, B. X.; Kim, D. K.; Bloom, S.; Huang, R. Y.-C.; Qiao, J. X.; Ewing, W. R.; Oblinsky, D. G.; Scholes, G. D.; MacMillan, D. W. C.
Nat. Chem. 2021. 13, 902–908. DOI: 10.1038/s41557-021-00733-y
  • Group: MacMillan at Princeton University
  • Catalyst: Lumiflavin (photocatalyst)
  • Model: PR160-440

21.

Photocatalytic carbocarboxylation of styrenes with CO2 for the synthesis of γ-aminobutyric esters

Hahm, H.; Kim, J.; Ryoo, J. Y.; Han, M. S.; Hong, S.
Org. Biomol. Chem. 2021. 19, 6301-6312. DOI: 10.1039/D1OB00866H
  • Group: Hong at Gwangju Institute of Science and Technology
  • Catalyst: 4CzBnBN (photocatalyst)
  • Model: A80 Tuna Blue

22.

Visible-Light Driven Organo-photocatalyzed Multicomponent Reaction for C(sp3)−H Alkylation of Phosphoramides with in situ Generated Michael Acceptors

Ghosh, K. G.; Das, D.; Chandu, P.; Sureshkumar, D.
Eur. J. Org. Chem. 2021. 2021, 4293-4298. DOI: 10.1002/ejoc.202100561
  • Group: Sureshkumar at Indian Institute of Science Education and Research Kolkata
  • Catalyst: Acr-mes+ClO4- (photocatalyst)
  • Model: PR160L-456

23.

A radical approach for the selective C–H borylation of azines

Kim, J. H.; Constantin, T.; Simonetti, M.; Llaveria, J.; Sheikh, N. S.; Leonori, D.
Nature 2021. 595, 677–683. DOI: 10.1038/s41586-021-03637-6
  • Group: Leonori at University of Manchester
  • Catalyst: 4CzIPN (photocatalysts)
  • Model: PR160-440

24.

Organic thermally activated delayed fluorescence (TADF) compounds used in photocatalysis

Brydena, M. A.; Zysman-Colman, E.
Chem. Soc. Rev. 2021. 50, 7587-7680. DOI: 10.1039/D1CS00198A.
  • Group: Zysman-Colman at University of St Andrews
  • Catalyst: 4DPAIPN (photocatalysts)
  • Model: PR160-456

25.

Accessing Aliphatic Amines in C–C Cross-Couplings by Visible Light/Nickel Dual Catalysis

Dong, W.; Badir, S. O.; Zhang, X.; Molander, G. A.
Org. Lett. 2021. 23 (11), 4250–4255. DOI: 10.1021/acs.orglett.1c01207.
  • Group: Molander at University of Pennsylvania
  • Catalyst: 4CzIPN (photocatalysts), Nickel
  • Model: H150 Blue

26.

Photoredox Propargylation of Aldehydes Catalytic in Titanium

Calogero, F.; Gualandi, A.; Di Matteo, M.; Potenti S.; Fermi, A.; Bergamini, G.; Cozzi, P. G.
J. Org. Chem. 2021. 86 (9), 7002–7009. DOI: 10.1021/acs.joc.1c00521
  • Group: Cozzi at Università di Bologna
  • Catalyst: 3DPAFIPN (photocatalysts), Titanium
  • Model: PR160L-456

27.

Diaryl Ether Formation Merging Photoredox and Nickel Catalysis

Liu, L.; Nevado, C.
Organometallics 2021. 40 (14), 2188-2193. DOI: 10.1021/acs.organomet.1c00018
  • Group: Nevado at University of Zurich
  • Catalyst: 4CzIPN, Iridium (photocatalysts), Nickel
  • Model: H150 Blue

28.

Chromoselective Photocatalysis Enables Stereocomplementary Biocatalytic Pathways

Schmermund, L.; Reischauer, S.; Bierbaumer, S.; Winkler, C. K.;Diaz-Rodriguez, A.; Edwards, L. J.;Kara, S.; Mielke, T.; Cartwright, J.; Grogan, G.; Pieber, B.; Kroutil, W.
Angew. Chem. Int. Ed. 2021. 60, 6965. DOI: 10.1002/anie.202100164
  • Group: Pieber at Max Planck Institute of Colloids and Interfaces & Kroutil at University of Graz
  • Catalyst: CN-OA-m (photocatalysts)
  • Model: PR160-440, PR160-525

29.

Visible-Light-Driven Organophotocatalyzed Mono-, Di-, and Tri-C(sp3)–H Alkylation of Phosphoramides

Ghosh, K. G.; Das, D.; Chandu, P.; Sureshkumar, D.
J. Org. Chem. 2021. 86 (3), 2644-2657. DOI: 10.1021/acs.joc.0c02695
  • Group: Sureshkumar at Indian Institute of Science Education and Research Kolkata
  • Catalyst: Eosin-Y, Acridinium Acr-mes+ClO4- (photocatalysts)
  • Model: PR160L-456

Featured
30.

Visible-Light-Mediated Oxidative Debenzylation Enables the Use of Benzyl Ethers as Temporary Protecting Groups

Cavedon, C.; Sletten, E. T.; Madani, A.; Niemeyer, O.; Seeberger, P. H.; Pieber, B.
Org. Lett. 2021. 23 (2), 514-518. DOI: 10.1021/acs.orglett.0c04026
  • Group: Pieber at Max Planck Institute of Colloids and Interfaces
  • Catalyst: DDQ, TBN (photocatalysts)
  • Model: PR160L-440, PR160L-525

31.

Photoenzymatic Reductions Enabled by Direct Excitation of Flavin-Dependent “Ene”-Reductases

Sandoval, B. A.; Clayman, P. D.; Oblinsky, D. G.; Oh, S.; Nakano, Y.; Bird, M.; Scholes, G. D.; Hyster, T. K.
J. Am. Chem. Soc. 2021. 143 (4), 1735-1739. DOI: 10.1021/jacs.0c11494
  • Group: Hyster at Princeton University
  • Catalyst: Flavin-Dependent “Ene”-Reductases (photocatalyst)
  • Model: PR160L-390

32.

Site-Selective Functionalization of Methionine Residues via Photoredox Catalysis

Kim, J.; Li, B. X.; Huang, R. Y.-C.; Qiao, J. X.; Ewing, W. R.; MacMillan, D. W. C.
J. Am. Chem. Soc. 2020. 142 (51), 21260-21266. DOI: 10.1021/jacs.0c09926
  • Group: MacMillan at Princeton University
  • Catalyst: Lumiflavin (photocatalyst)
  • Model: PR160-440

33.

Nucleophilic Aromatic Substitution of Unactivated Fluoroarenes Enabled by Organic Photoredox Catalysis

Pistritto, V. A.; Schutzbach-Horton, M. E.; Nicewicz, D. A.
J. Am. Chem. Soc. 2020. 142 (40), 17187-17194. DOI: 10.1021/jacs.0c09296
  • Group: Nicewicz at University of North Carolina at Chapel Hill
  • Catalyst: Xanthylium tetrafluoroborate (photocatalyst)
  • Model: PR160-427, PR160-456

34.

Organocatalyzed Photoredox Radical Ring-Opening Polymerization of Functionalized Vinylcyclopropanes

Chen, D.-F.; Bernsten, S.; Miyake, G. M.
Macromolecules 2020. 53 (19), 8352-8359. DOI: 10.1021/acs.macromol.0c01367
  • Group: Miyake at Colorado State University
  • Catalyst: N,N-diaryl dihydrophenazines, 3,7-di(4-biphenyl)-Nnaphthylphenoxazine and EtVCP-C2 (photocatalysts)
  • Model: H150 Blue

35.

Overcoming limitations in dual photoredox/nickel-catalysed C–N cross-couplings due to catalyst deactivation

Gisbertz, S.; Reischauer, S.; Pieber, B.
Nat. Catal. 2020. 3, 611–620. DOI: 10.1038/s41929-020-0473-6
  • Group: Pieber at Max Planck Institute of Colloids and Interfaces
  • Catalyst: Carbon nitride CN-OA-m (photocatalyst), Nickel
  • Model: PR160-370

36.

Helical Carbenium Ion: A Versatile Organic Photoredox Catalyst for Red-Light-Mediated Reactions

Mei, L.; Veleta, J. M.; Gianetti T. L.
J. Am. Chem. Soc. 2020. 142 (28), 12056-12061. DOI: 10.1021/jacs.0c05507
  • Group: Gianetti at University of Arizona
  • Catalyst: Pr-DMQA (photocatalyst)
  • Model: PR160L-640-C

Most Cited
37.

Discovery and characterization of an acridine radical photoreductant.

MacKenzie, I. A.; Wang, L.; Onuska, N. P. R.; Williams, O. F.; Begam, K.; Moran, A. M.; Dunietz, B. D.; Nicewicz, D. A.
Nature 2020. 580, 76–80. DOI: 10.1038/s41586-020-2131-1
  • Group: Nicewicz at University of North Carolina at Chapel Hill
  • Catalyst: di-tBu-Mes-Acr+BF4, Mes-Acr-BF4 (photocatalyst)
  • Model: PR160-390, PR160-467

Featured
38.

The merger of decatungstate and copper catalysis to enable aliphatic C(sp3)–H trifluoromethylation

Sarver, P.J.; Bacauanu, V.; Schultz, D.M.; DiRocco, D.A.; Lam, Y.H.; Sherer, E.C.; MacMillan, D.W.C.
Nat. Chem. 2020. 12, 459–467. DOI: 10.1038/s41557-020-0436-1
  • Group: MacMillan at Princeton University
  • Catalyst: Decatungstate (photocatalyst), Copper
  • Model: PR160-390

39.

Bromine Radical Catalysis by Energy Transfer Photosensitization

Chen, D.-F.; Chrisman, C. H.; Miyake, G. M.
ACS Catal. 2020. 10 (4), 2609-2614. DOI: 10.1021/acscatal.0c00281
  • Group: Miyake at Colorado State University
  • Catalyst: 4CzIPN, Cinnamyl bromide (photocatalyst)
  • Model: H150 Blue

40.

A General Strategy for Aliphatic C–H Functionalization Enabled by Organic Photoredox Catalysis

Margrey, K. A.; Czaplyski, W. L.; Nicewicz, D. A.; Alexanian, E. J.
J. Am. Chem. Soc. 2018. 140 (12), 4213–4217. DOI: 10.1021/jacs.8b00592
  • Group: Nicewicz & Alexanian at University of North Carolina at Chapel Hill
  • Catalyst: Acridinium (photocatalyst)
  • Model: H150 Blue

Direct Photoexcitation

Featured
1.

Regiodivergent Photocyclization of Dearomatized Acylphloroglucinols: Asymmetric Syntheses of (−)-Nemorosone and (−)-6-epi-Garcimultiflorone A

Wen, S.; Boyce, J. H.; Kandappa, S. K.; Sivaguru, J.; Porco, J. A.
J. Am. Chem. Soc. 2019. 141 (28), 11315-11321. DOI: 10.1021/jacs.9b05600
  • Group: Porco at Boston University
  • Model: PR160-390


Featured
2.

Photochemically derived 1-aminonorbornanes provide structurally unique succinate dehydrogenase inhibitors with in vitro and in planta activity

Staveness, D.; Breunig, M.; Ortiz, V.; Sang, H.; Collins, J. L.; McAtee, R. C.; Chilvers, M. I.; Stephenson, C. R. J.
Cell Rep. Phys. Sci. 2021. 2, 100548. DOI: 10.1016/j.xcrp.2021.100548.
  • Group: Stephenson at University of Michigan
  • Model: PR160-390

Figure S4. Batch Processing Equipment. Left: Full apparatus in use; Right: Zoom in on lamp orientation while in use (Kessil PR160-390nm pictured).

3.
  • Group: Plaza at University of Oviedo
  • Model: PR160L-440, PR160L-456


4.

Photochemical C(sp2)−H Pyridination via Arene–Pyridinium Electron Donor–Acceptor Complexes

Lasky, M. R.; Salvador, T. K.; Mukhopadhyay, S.; Remy, M. S.; Vaid, T. P.; Sanford, M. S.
Angew. Chem. Int. Ed. 2022, 61, e202208741; Angew. Chem. 2022, 134, e202208741. DOI: 10.1002/anie.202208741
  • Group: Sanford at University of Michigan
  • Model: PR160L-390, PR160L-440

Figure S14. The photochemical experimental setup for SNAr pyridination reactions using an EvoluChemTM PhotoRedOx Duo (HCK1006-01-023) box equipped with two 390 nm Kessil LEDs (PR160L) and air cooling. These photographs were taken in the Sanford Laboratory by Matthew R. Lasky

5.

Photoexcited nitroarenes for the oxidative cleavage of alkenes

Ruffoni, A.; Hampton, C.; Simonetti, M.; Leonori, D.
Nature 2022. 610, 81–86. DOI:10.1038/s41586-022-05211-0
  • Group: Leonori at RWTH Aachen University
  • Model: PR160L-390

6.

Photoinduced Oxygen Transfer Using Nitroarenes for the Anaerobic Cleavage of Alkenes

Wise, D. E.; Gogarnoiu, E. S.; Duke, A. D.; Paolillo, J. M.; Vacala, T. L.; Hussain, W. A.; Parasram, M.
J. Am. Chem. Soc. 2022. 144, 15437–15442. DOI: 10.1021/jacs.2c05648
  • Group: Parasram at New York University
  • Model: PR160L-390


7.

Solid-Phase Photochemical Peptide Homologation Cyclization

Elbaum, M. B.; Elkhalifa, M. A.; Molander, G. A.; Chenoweth, D. M.
Org. Lett. 2022. 24, 28, 5176–5180. DOI: 10.1021/acs.orglett.2c02012

8.

Scaffold hopping by net photochemical carbon deletion of azaarenes

Woo, J.; Christian, A. H.; Burgess, S. A.; Jiang, Y.; 3, Mansoor, U. F.; Levin, M. D.
Science. 2022, 376 (6592), 527-532. DOI: 10.1126/science.abo4282
  • Group: Levin at University of Chicago
  • Model: PR160-390

Figure S1: 390 nm LED Setup for Photochemical Carbon Deletion

9.

Development and Scale-Up of a Novel Photochemical C–N Oxidative Coupling

Robinson, A.; Dieckmann, M.; Krieger, J.-P.; Vent-Schmidt, T.; Marantelli, D.; Kohlbrenner, R.; Gribkov, D.; Simon, L. L.; Austrup, D.; Rod, A.; Bochet, C. G.
Org. Process Res. Dev. 2021. 25 (10), 2205-2220. DOI: 10.1021/acs.oprd.1c00244

10.

Direct Photoexcitation of Ethynylbenziodoxolones: An Alternative to Photocatalysis for Alkynylation Reactions

Amos, S.G.E.; Cavalli, D.; Le Vaillant, F.; Waser, J.
Angew. Chem. Int. Ed. 2021. 60, 23827. DOI: 10.1002/anie.202110257
  • Group: Waser at Ecole polytechnique fédérale de Lausanne (EPFL)
  • Model: PR160L-440

11.

Photoredox-Mediated Hydroalkylation and Hydroarylation of Functionalized Olefins for DNA-Encoded Library Synthesis

Badir, S.O.; Lipp, A.; Krumb, M.; Cabrera-Afonso, M.J.; Kammer, L.; Wu, V.; Huang, M.; Marcaurelle, L.; Molander, G. A.
Chem. Sci., 2021. 12, 12036-12045. DOI: 10.1039/D1SC03191K
  • Group: Molander at University of Pennsylvania
  • Model: PR160-456

12.

Photocatalyst-free, visible-light-mediated nickel catalyzed carbon–heteroatom cross-couplings

Cavedon, C.; Gisbertz, S.; Vogl, S.; Richter, N.; Schrottke, S.; Teutloff, C.; Seeberger, P. H.; Thomas, A.; Pieber, B.
ChemRxiv 2021. DOI: 10.33774/chemrxiv-2021-kt2wr
This content is an early or alternative research output and has not been peer-reviewed at the time of posting.
  • Group: Pieber at Max Planck Institute of Colloids and Interfaces
  • Model: PR160L-440, PR160L-525

13.

From Photoredox Catalysis to the Direct Excitation of EthynylBenziodoXolones: Accessing Alkynylated Quaternary Carbons from Alcohols via Oxalates

Amos, S. G. E.; Cavalli, D.; Le Vaillant, F.; Waser, J.
ChemRxiv 2021. DOI: 10.33774/chemrxiv-2021-56f12
This content is a preprint and has not been peer-reviewed.
  • Group: Waser at Ecole polytechnique fédérale de Lausanne (EPFL)
  • Model: PR160L-440

14.

Biocompatible Photoinduced Alkylation of Dehydroalanine for the Synthesis of Unnatural α-Amino Acids

Delgado, J. A. C.; Correia, J. T. M.; Pissinati, E. F.; Paixão, M. W.
Org. Lett. 2021. 23 (13), 5251–5255. DOI: 10.1021/acs.orglett.1c01781
  • Group: Paixão at Federal University of São Carlos—UFSCar
  • Model: H150 Blue

15.

Nickel-Catalyzed Decarboxylative Cross-Coupling of Bicyclo[1.1.1]pentyl Radicals Enabled by Electron Donor–Acceptor Complex Photoactivation

Polites, V. C.; Badir, S. O.; Keess, S.; Jolit, A.; Molander, G. A.
Org. Lett. 2021. 23 (12), 4828-4833. DOI: 10.1021/acs.orglett.1c01558
  • Group: Molander at University of Pennsylvania
  • Model: PR160L-390

16.

Catalyst-Free Decarbonylative Trifluoromethylthiolation Enabled by Electron Donor-Acceptor Complex Photoactivation

Lipp, A.; Badir, S. O.; Dykstra, R.; Gutierrez, O.; Molander, G. A.
Adv. Synth. Catal. 2021. 363, 3507. DOI: 10.1002/adsc.202100469
  • Group: Molander at University of Pennsylvania
  • Model: PR160L-390, A160WE Tuna Blue

17.

Photo-Induced Arylation of Carbazoles With Aryldiazonium Salts

Maeda, B.; Mori, G.; Sakakibara, Y.; Yagi, A.; Murakami, K.; Itami, K.
Asian J. Org. Chem. 2021. 10, 1428. DOI: 10.1002/ajoc.202100191

18.

Lewis Acid Activation of Fragment-Coupling Reactions of Tertiary Carbon Radicals Promoted by Visible-Light Irradiation of EDA Complexes

Pitre, S. P.; Allred, T. K.; Overman, L. E.
Org. Lett. 2021. 23 (3), 1103–1106. DOI: 10.1021/acs.orglett.1c00023
  • Group: Overman at University of California, Irvine
  • Model: H150 Blue

19.

Photo-mediated selective deconstructive geminal dihalogenation of trisubstituted alkenes

Wang, H.; Toh, R. W.; Shi, X.; Wang, T.; Cong, X.; Wu, J.
Nat. Commun. 2020. 11, 4462. DOI: 10.1038/s41467-020-18274-2
  • Group: Wu at National University of Singapore
  • Model: PR160-456

20.

Generation of Alkyl Radical through Direct Excitation of Boracene-Based Alkylborate

Sato, Y.; Nakamura, K.; Sumida, Y.; Hashizume, D.; Hosoya, T.; Ohmiya, H.
J. Am. Chem. Soc. 2020. 142 (22), 9938-9943. DOI: 10.1021/jacs.0c04456
  • Group: Ohmiya at Kanazawa University
  • Model: PR160L-440

21.

Direct Decarboxylative Functionalization of Carboxylic Acids via O–H Hydrogen Atom Transfer

Na, C. G.; Ravelli, D.; Alexanian, E. J.
J. Am. Chem. Soc. 2020. 142 (1), 44-49. DOI: 10.1021/jacs.9b10825
  • Group: Alexanian at University of North Carolina at Chapel Hill
  • Model: PR160-440

Featured
22.

Exploiting Imine Photochemistry for Masked N-Centered Radical Reactivity

Staveness, D.; Collins, J. L.; McAtee, R. C.; Stephenson, C. R. J.
Angew. Chem. Int. Ed. 2019. 58, 19000. DOI: 10.1002/anie.201909492
  • Group: Stephenson at University of Michigan
  • Model: PR160-390

Beyond Blue

Featured
1.

Development of a Platform for Near-Infrared Photoredox Catalysis

Ravetz, B. D.; Tay, N. E. S.; Joe, C. L.; Sezen-Edmonds, M.; Schmidt, M. A.; Tan, Y.; Janey, J. M.; Eastgate, M. D.; Rovis. T.
ACS Cent. Sci. 2020. 6 (11), 2053-2059. DOI: 10.1021/acscentsci.0c00948
  • Group: Rovis at Columbia University
  • Catalyst: Os(II) photosensitizers
  • Model: PR160L-456, PR160L-660-C, PR160L-740-C


2.

Implantable optical fibers for immunotherapeutics delivery and tumor impedance measurement

Chin, A. L.; Jiang, S.; Jang, E.; Niu, L.; Li, L.; Jia, X.; Tong, R.
Nat. Commun. 2021. 12, 5138. DOI: 10.1038/s41467-021-25391-z
  • Group: Tong at Virginia Polytechnic Institute and State University
  • Model: H150 Red (600-700nm)

3.

Photoredox α-Arylation of Carbonyl Compounds

Hossain, M. M.; Shaikh, A.; Moutet, J.; Gianetti, T.
ChemRxiv 2021. Doi:10.33774/chemrxiv-2021-gsq6s-v2
This content is an early or alternative research output and has not been peer-reviewed at the time of posting.
  • Group: Gianetti at University of Arizona
  • Catalyst: Acridinium (photocatalyst)
  • Model: PR160L-518-C, PR160L-467

4.

Direct 3-Acylation of Indolizines by Carboxylic Acids for the Practical Synthesis of Red Light-Releasable Caged Carboxylic Acids

Watanabe, K.; Terao, N.; Niwa, T.; Hosoya, T.
J. Org. Chem. 2021. 86 (17), 11822-11834. DOI: 10.1021/acs.joc.1c01244
  • Group: Hosoya at RIKEN
  • Catalyst: Methylene blue (photocatalyst)
  • Model: PR160L-440

5.

Bringing Earth-Abundant Plasmonic Catalysis to Light: Gram-Scale Mechanochemical Synthesis and Tuning of Activity by Dual Excitation of Antenna and Reactor Sites

Quiroz, J.; de Oliveira, P. F. M.; Shetty, S.; Oropeza, F. E.; de la Peña O’Shea, V. A.; Rodrigues, L. C. V.; Rodrigues, M. P. de S.; Torresi, R. M.; Emmerling, F.; Camargo, P. H. C.
ACS Sustain. Chem. Eng. 2021. 9 (29), 9750-9760. DOI: 10.1021/acssuschemeng.1c02063
  • Group: Camargo at University of Helsinki
  • Catalyst: Plasmonic Au/MoO3_P (photocatalyst)
  • Model: PR160L-525, PR160L-740-C

6.

Photocatalyst-free, visible-light-mediated nickel catalyzed carbon–heteroatom cross-couplings

Cavedon, C.; Gisbertz, S.; Vogl, S.; Richter, N.; Schrottke, S.; Teutloff, C.; Seeberger, P. H.; Thomas, A.; Pieber, B.
ChemRxiv 2021. DOI: 10.33774/chemrxiv-2021-kt2wr
This content is an early or alternative research output and has not been peer-reviewed at the time of posting.
  • Group: Pieber at Max Planck Institute of Colloids and Interfaces
  • Catalyst: Nickel
  • Model: PR160L-440, PR160L-525

7.

Synthesis of CF3-Containing Spirocyclic Indolines via a Red-Light-Mediated Trifluoromethylation/Dearomatization Cascade

Mei, L.; Moutet, J.; Stull, S. M.; Gianetti, T.L.
J. Org. Chem. 2021. 86 (15), 10640-10653. DOI: 10.1021/acs.joc.1c01313
  • Group: Gianetti at University of Arizona
  • Catalyst: Pr-DMQA (photocatalyst)
  • Model: PR160-640-C

Featured
8.

Visible-Light-Mediated Oxidative Debenzylation Enables the Use of Benzyl Ethers as Temporary Protecting Groups

Cavedon, C.; Sletten, E. T.; Madani, A.; Niemeyer, O.; Seeberger, P. H.; Pieber, B.
Org. Lett. 2021. 23 (2), 514-518. DOI: 10.1021/acs.orglett.0c04026
  • Group: Pieber at Max Planck Institute of Colloids and Interfaces
  • Catalyst: DDQ, TBN (photocatalysts)
  • Model: PR160L-440, PR160L-525

Featured
9.

Polysulfide Anions as Visible Light Photoredox Catalysts for Aryl Cross-Couplings

Li, H.; Tang, X.; Pang, J. H.; Wu, X.; Yeow, E. K. L.; Wu, J.; Chiba, S.
J. Am. Chem. Soc. 2021. 143 (1), 481-487. DOI: 10.1021/jacs.0c11968
  • Group: Chiba at Nanyang Technological University
  • Catalyst: Tetrasulfide dianions (S42–) (photocatalyst)
  • Model: PR160-640-C, PR160-525, PR160-456, PR160-440, PR160-427, PR160-390

10.

Modular, Self-Assembling Metallaphotocatalyst for Cross-Couplings Using the Full Visible-Light Spectrum

Reischauer, S.; Strauss, V.; Pieber, B.
ACS Catal. 2020. 10 (22), 13269-13274. DOI: 10.1021/acscatal.0c03950
  • Group: Pieber at Max Planck Institute of Colloids and Interfaces
  • Catalyst: Nickel, TiO2, Fluorescein sodium, Coumarin 343, Ruthenium (photocatalysts)
  • Model: PR160-440, PR160-525, H160 Tuna Flora (Red 666 nm)

11.

Helical Carbenium Ion: A Versatile Organic Photoredox Catalyst for Red-Light-Mediated Reactions

Mei, L.; Veleta, J. M.; Gianetti T. L.
J. Am. Chem. Soc. 2020. 142 (28), 12056-12061. DOI: 10.1021/jacs.0c05507
  • Group: Gianetti at University of Arizona
  • Catalyst: Pr-DMQA (photocatalyst)
  • Model: PR160L-640-C

12.

Photoredox catalysis using infrared light via triplet fusion upconversion

Ravetz, B. D.; Pun, A. B.; Churchill, E. M.; Congreve, D. N.; Rovis, T.; Campos, L. M.
Nature 2019. 565, 343-346. DOI: 10.1038/s41586-019-1122-6
  • Group: Rovis at Columbia University
  • Catalyst:
  • Model: PR160L-640-C

Photoreactor Design

Featured
1.

Exploiting Imine Photochemistry for Masked N-Centered Radical Reactivity

Staveness, D.; Collins, J. L.; McAtee, R. C.; Stephenson, C. R. J.
Angew. Chem. Int. Ed. 2019. 58, 19000. DOI: 10.26434/chemrxiv.7390421.v1
This content is an early or alternative research output and has not been peer-reviewed at the time of posting.
  • Group: Stephenson at University of Michigan
  • Model: PR160-390

Figure S2. Full Apparatus. Top: Generic schematic of flow apparatus; Middle: Full apparatus with key parts labeled.

Featured
2.

Polysulfide Anions as Visible Light Photoredox Catalysts for Aryl Cross-Couplings

Li, H.; Tang, X.; Pang, J. H.; Wu, X.; Yeow, E. K. L.; Wu, J.; Chiba, S.
J. Am. Chem. Soc. 2021. 143 (1), 481-487. DOI: 10.1021/jacs.0c11968
  • Group: Chiba at Nanyang Technological University
  • Catalyst: Tetrasulfide dianions (S42–) (photocatalyst)
  • Model: PR160-640-C, PR160-525, PR160-456, PR160-440, PR160-427, PR160-390

Figure S8 The flow apparatus. A. The whole set-up. B. The whole set-up with light irradiation. C. The tubing on a glass cylinder.

3.

3D Printed Reactors and Kessil Lamp Holders for Flow Photochemistry: Design and System Standardization

Penny, M.; Hilton, S.
ChemRxiv 2021. DOI: 10.33774/chemrxiv-2021-kmxgd
This content is a preprint and has not been peer-reviewed.
  • Group: Hilton at University College London
  • Model: A160WE Tuna Blue

Supplementary Figure 1 Image showing the photoflow set-up with the protective cover removed for visualisation of location of the Kessil lamp (left) and the realised system (right).

4.

Rapid Optimization of Photoredox Reactions for Continuous-Flow Systems Using Microscale Batch Technology

González-Esguevillas, M.; Fernández, D. F.; Rincón, J. A.; Barberis, M.; de Frutos, O.; Carlos Mateos, C.; García-Cerrada, S.; Agejas, J.; MacMillan, D. W. C.
ACS Cent. Sci. 2021. 7 (7), 1126-1134. DOI: 10.1021/acscentsci.1c00303
  • Group: MacMillan at Princeton University
  • Catalyst: Iridium, 4CzIPN (photocatalysts)
  • Model: PR160-390, PR160-427, PR160-440, PR160-456, PR160-467

*Modified from Fig. S1. Part 3. g) placing the stand inside of the box, h) plate inside of the box, i) top mirror with a fan on the center, j) box closed, k and l) FLOSIM device on.

Featured
5.

Photocatalytic C-H activation and the subtle role of chlorine radical complexation in reactivity

Yang Q.; Wang Y. H.; Qiao Y.; Gau M.; Carroll P. J.; Walsh P. J.; Schelter E. J.
Science 2021. 372 (6544), 847-852. DOI: 10.1126/science.abd8408
  • Group: Schelter at University of Pennsylvania
  • Catalyst: Cerium (photocatalyst)
  • Model: PR160-467, PR160-390

Figure S3. (A)Pictures of the high-pressure photoreactor from front. (B) Disassembling of the photoreactor. (C) Reaction performed using a high-pressure photo-reactor.

6.

A 3D-Printed Open Access Photoreactor Designed for Versatile Applications in Photoredox- and Photoelectrochemical Synthesis

Schiel, F.; Peinsipp, C.; Kornigg, S.; Böse, D.
ChemPhotoChem 2021. 5, 431–437. DOI: 10.1002/cptc.202000291

7.

Visible-Light-Mediated Oxidative Debenzylation Enables the Use of Benzyl Ethers as Temporary Protecting Groups

Cavedon, C.; Sletten, E. T.; Madani, A.; Niemeyer, O.; Seeberger, P. H.; Pieber, B.
Org. Lett. 2021. 23 (2), 514-518. DOI: 10.1021/acs.orglett.0c04026
  • Group: Pieber at Max Planck Institute of Colloids and Interfaces
  • Catalyst: DDQ, TBN (photocatalysts)
  • Model: PR160L-440, PR160L-525

Figure S4. Experimental setup for flow experiments.
Figure S5. Experimental setup for extended retention time flow experiment.

Featured
8.

Organocatalytic Approach to Photochemical Lignin Fragmentation

Yang, C.; Kärkäs, M. D.; Magallanes, G.; Chan, K.; Stephenson, C. R. J.
Org. Lett. 2020. 22 (20), 8082-8085. DOI: 10.1021/acs.orglett.0c03029
  • Group: Stephenson at University of Michigan
  • Catalyst: PhPTH (photocatalyst)
  • Model: PR160L-390

Figure S3. Flow reaction setup when light off (left) and light on (right)

Featured
9.

Nucleophilic (Radio)Fluorination of Redox-Active Esters via Radical-Polar Crossover Enabled by Photoredox Catalysis

Webb, E. W.; Park, J. B.; Cole, E. L.; Donnelly, D. J.; Bonacorsi, S. J.; Ewing, W. R.; Doyle, A. G.
J. Am. Chem. Soc. 2020. 142 (20), 9493-9500. DOI: 10.1021/jacs.0c03125
  • Group: Doyle at University of California, Los Angeles (UCLA) (previously Princeton University)
  • Catalyst: Iridium (photocatalyst)
  • Model: H150 Blue, PR160-440

Figure S14. Photocatalytic Radiochemical Fluorination Setup and Apparatus.

10.

Regiodivergent Photocyclization of Dearomatized Acylphloroglucinols: Asymmetric Syntheses of (−)-Nemorosone and (−)-6-epi-Garcimultiflorone A

Wen, S.; Boyce, J. H.; Kandappa, S. K.; Sivaguru, J.; Porco, J. A.
J. Am. Chem. Soc. 2019. 141 (28), 11315-11321. DOI: 10.1021/jacs.9b05600
  • Group: Porco at Boston University
  • Model: PR160-390

Figure S2. Temperature-controlled flow photoreactor II.

11.

Photoredox Iridium–Nickel Dual-Catalyzed Decarboxylative Arylation Cross-Coupling: From Batch to Continuous Flow via Self-Optimizing Segmented Flow Reactor

Hsieh, H.-W.; Coley, C. W.; Baumgartner, L. M.; Jensen, K. F.; obinson, R. I.
Org. Process Res. Dev. 2018. 22 (4), 542-550. DOI: 10.1021/acs.oprd.8b00018