Metal Catalyst

1.
Enantioselective Decarboxylative Arylation of α-Amino Acids via the Merger of Photoredox and Nickel Catalysis
Zuo, Z.; Cong, H.; Li, W.; Choi, J.; Fu, G. C.; MacMillan, D. W. C.
J. Am. Chem. Soc. 2016. 138 (6), 1832-1835. DOI: 10.1021/jacs.5b13211- Group: MacMillan at Princeton University
- Catalyst: Iridium (photocatalyst), Nickel
- Model: H150 Blue


2.
Photocatalytic C-H activation and the subtle role of chlorine radical complexation in reactivity
Yang Q.; Wang Y. H.; Qiao Y.; Gau M.; Carroll P. J.; Walsh P. J.; Schelter E. J.
Science 2021. 372 (6544), 847-852. DOI: 10.1126/science.abd8408- Group: Schelter at University of Pennsylvania
- Catalyst: Cerium (photocatalyst)
- Model: PR160-467, PR160-390

Figure S2. A picture of the photoredox setup used in batch reactions.

3.
Nucleophilic (Radio)Fluorination of Redox-Active Esters via Radical-Polar Crossover Enabled by Photoredox Catalysis
Webb, E. W.; Park, J. B.; Cole, E. L.; Donnelly, D. J.; Bonacorsi, S. J.; Ewing, W. R.; Doyle, A. G.
J. Am. Chem. Soc. 2020. 142 (20), 9493-9500. DOI: 10.1021/jacs.0c03125- Group: Doyle at University of California, Los Angeles (UCLA) (previously Princeton University)
- Catalyst: Iridium (photocatalyst)
- Model: H150 Blue, PR160-440

Figure S1. Set-up for Screening and Isolation Scale Fluorination Reactions. Left: Isolation (left) and screening scale (right) in photocatalysis set up. Right: Screening-multiple vials per lamp, isolation-one vial per lamp.

4.
Alcohols as Latent Coupling Fragments for Metallaphotoredox Catalysis: sp3–sp2 Cross-Coupling of Oxalates with Aryl Halides
Zhang, X.; MacMillan, D. W. C.
J. Am. Chem. Soc. 2016. 138 (42), 13862-13865. DOI: 10.1021/jacs.6b09533- Group: MacMillan at Princeton University
- Catalyst: Iridium (photocatalyst), Nickel
- Model: H150 Blue

Figure S1 Top view. Four 34 W Kessil KSH150B Blue LED Grow Light 150 are positioned on all four sides of the box covered with aluminum foil.

Figure S2 Set-up for Screening and Isolation Scale Fluorination Reactions. Left: Isolation (left) and screening scale (right) in photocatalysis set up. Right: Screening-multiple vials per lamp, isolation-one vial per lamp.

5.
Direct C(sp3)–H Cross Coupling Enabled by Catalytic Generation of Chlorine Radicals
Shields , B. J.; Doyle, A. G.
J. Am. Chem. Soc. 2016. 138 (39), 12719-12722. DOI: 10.1021/jacs.6b08397- Group: Doyle at University of California, Los Angeles (UCLA) (previously Princeton University)
- Catalyst: Iridium (photocatalyst), Nickel
- Model: H150 Blue
6.
Photoacid-catalyzed acetalization of carbonyls with alcohols
Saway, J.; Pierrea, A. F.; Badillo, J. J.
Org. Biomol. Chem. 2022, 20, 6188-6192. DOI: 10.1039/D2OB00435F- Group: Badillo at Seton Hall University
- Catalyst: 6-bromo-2-naphthol, Iridium, Ruthenium (photocatalyst), Nickel
- Model: A160WE Tuna Blue
7.
Transfer of photochemistry from UV to visible: An expedient access to a bridged pyrrolidine
Lorthioir, O.; Corner, T.; Demanze, S.; Greenwood, R.; Proctor, K.; Stokes, S.; Turner, P.
Tetrahedron Lett. 2021. 84, 153447. DOI: 10.1016/j.tetlet.2021.153447- Group: AstraZeneca UK
- Catalyst: Iridium (photocatalyst)
- Model: PR160L-456
8.
Visible-Light Induced C(sp2)−H Amidation with an Aryl–Alkyl σ-Bond Relocation via Redox-Neutral Radical–Polar Crossover
Keum, H.; Jung, H.; Jeong, J.; Kim,D.; Chang S.
Angew. Chem. Int. Ed. 2021. 60 (48), 25235-25240. DOI: 10.1002/anie.202108775- Group: Chang at Korea Advanced Institute of Science and Technology (KAIST)
- Catalyst: Iridium (photocatalyst)
- Model: PR160L-456
9.
Metallaphotoredox-enabled deoxygenative arylation of alcohols
Dong, Z.; MacMillan, D. W. C.
Nature 2021. 598, 451–456. DOI: 10.1038/s41586-021-03920-6- Group: MacMillan at Princeton University
- Catalyst: Iridium (photocatalyst), Nickel
- Model: A160WE Tuna Blue
10.
PCET-Based Ligand Limits Charge Recombination with an Ir(III) Photoredox Catalyst
Sayre, H.; Ripberger, H. H.; Odella, E.; Zieleniewska, A.; Heredia, D. A.; Rumbles, G.; Scholes, G. D.; Moore, T. A.; Moore, A. L.; Knowles, R. R.
J. Am. Chem. Soc. 2021. 143 (33), 13034-13043. DOI: 10.1021/jacs.1c01701- Group: Knowles at Princeton University
- Catalyst: Iridium (photocatalyst)
- Model: PR160-440, PR160-456
11.
Depolymerization of Hydroxylated Polymers via Light-Driven C–C Bond Cleavage
Nguyen, S. T.; McLoughlin, E. A.; Cox, J. H.; Fors, B. P.; Knowles, R. R.
J. Am. Chem. Soc. 2021. 143 (31), 12268–12277. DOI: 10.1021/jacs.1c05330- Group: Knowles at Princeton University
- Catalyst: Iridium, Acridinium (photocatalysts)
- Model: H150 Blue
12.
A Nanocrystal Catalyst Incorporating a Surface Bound Transition Metal to Induce Photocatalytic Sequential Electron Transfer Events
Martin, J. S.; Zeng, X.; Chen, X.; Miller, C.; Han, C.; Lin, Y.; Yamamoto, N.; Wang, X.;
J. Am. Chem. Soc. 2021. 143 (30), 11361-11369. DOI: 10.1021/jacs.1c00503- Group: Yan at San Diego State University
- Catalyst: Copper exchanged lead-halide perovskite nanocrystal (Cu-CsPbBr3) (photocatalyst)
- Model: PR160-456
13.
Bringing Earth-Abundant Plasmonic Catalysis to Light: Gram-Scale Mechanochemical Synthesis and Tuning of Activity by Dual Excitation of Antenna and Reactor Sites
Quiroz, J.; de Oliveira, P. F. M.; Shetty, S.; Oropeza, F. E.; de la Peña O’Shea, V. A.; Rodrigues, L. C. V.; Rodrigues, M. P. de S.; Torresi, R. M.; Emmerling, F.; Camargo, P. H. C.
ACS Sustain. Chem. Eng. 2021. 9 (29), 9750-9760. DOI: 10.1021/acssuschemeng.1c02063- Group: Camargo at University of Helsinki
- Catalyst: Plasmonic Au/MoO3_P (photocatalyst)
- Model: PR160L-525, PR160L-740-C
14.
Visible light enables catalytic formation of weak chemical bonds with molecular hydrogen
Park, Y.; Kim, S.; Tian, L.; Zhong, H.; Scholes, G. D.; Chirik, P. J.
Nat. Chem. 2021. 13, 969–976. DOI: 10.1038/s41557-021-00732-z- Group: Chirik at Princeton University
- Catalyst: Iridium hydride (photocatalyst)
- Model: H150 Blue
15.
Pyridylphosphonium Salts as Alternatives to Cyanopyridines in Radical-Radical Coupling Reactions
Greenwood, J. W.; Boyle, B. T.; McNally, A.
Chem. Sci. 2021. 12, 10538-10543. DOI: 10.1039/D1SC02324A- Group: McNally at Colorado State University
- Catalyst: Iridium, 3DPAFIPN, [Mes-Acr]BF4 (photocatalyst)
- Model: PR160-456
16.
Photoinduced copper-catalysed asymmetric amidation via ligand cooperativity
Chen, C.; Peters, J.C.; Fu, G.C.
Nature 2021. 596, 250–256. DOI: 10.1038/s41586-021-03730-w- Group: Fu at California Institute of Technology
- Catalyst: Copper/bisphosphine/phenoxide complex (photocatalyst)
- Model: PR160-440
17.
Asymmetric benzylic C(sp3)−H acylation via dual nickel and photoredox catalysis
Huan, L.; Shu, X.; Zu, W.; Zhong, D.; Huo, H.
Nat. Commun. 2021. 12 (3536). DOI: 10.1038/s41467-021-23887-2- Group: Huo at Xiamen University
- Catalyst: Iridium (photocatalyst), Nickel
- Model: PR160L-427
18.
Iron-Catalyzed Photoinduced LMCT: A 1° C–H Abstraction Enables Skeletal Rearrangements and C(sp3)–H Alkylation
Kang, Y. C.; Treacy, S. M.; Rovis, T.
ACS Catal. 2021. 11 (12), 7442-7449. DOI: 10.1021/acscatal.1c02285- Group: Rovis at Columbia University
- Catalyst: Iron FeCl3 (photocatalyst)
- Model: PR160-440
19.
Alkylation of the α-amino C–H bonds of anilines photocatalyzed by a DMEDA-Cu-benzophenone complex: reaction scope and mechanistic studies
Baptiste Abadie, Gediminas Jonusauskas, Nathan Mcclenaghan, Patrick Toullec, Jean-Marc Vincent
Org. Biomol. Chem. 2021. 19 (26), 5800-5805. DOI: 10.1039/D1OB00960E- Group: Toullec & Vincent at University of Bordeaux
- Catalyst: DMEDA-Cu-benzophenone (photocatalyst)
- Model: PR160L-370, PR160L-390
20.
Isotope Effects and the Mechanism of Photoredox-Promoted [2 + 2] Cycloadditions of Enones
Kuan, K.-Y.; Singleton, D. A.
J. Org. Chem. 2021. 86 (9), 6305–6313. DOI: 10.1021/acs.joc.1c00099- Group: Singleton at Texas A&M University
- Catalyst: Ruthenium (photocatalyst)
- Model: H150 B
21.
Construction of Complex Cyclobutane Building Blocks by Photosensitized [2 + 2] Cycloaddition of Vinyl Boronate Esters
Scholz, S. O.; Kidd, J. B.; Capaldo, L.; Flikweert, N. E.; Littlefield, R. M.; Yoon, T. P.
Org. Lett. 2021. 23 (9), 3496-3501. DOI: 10.1021/acs.orglett.1c00938- Group: Yoon at University of Wisconsin–Madison
- Catalyst: Iridium (photocatalyst)
- Model: H150-B, PR160-427
22.
Diaryl Ether Formation Merging Photoredox and Nickel Catalysis
Liu, L.; Nevado, C.
Organometallics 2021. 40 (14), 2188-2193. DOI: 10.1021/acs.organomet.1c00018- Group: Nevado at University of Zurich
- Catalyst: Nickel, Iridium, 4CzIPN (photocatalysts)
- Model: H150 Blue
23.
Visible Light-Induced Pd-Catalyzed Alkyl-Heck Reaction of Oximes
Kvasovs, N.; Iziumchenko, V.; Palchykov, V.; Gevorgyan, V.
ACS Catal. 2021. 11 (6), 3749-3754. DOI: 10.1021/acscatal.1c00267- Group: Gevorgyan at University of Texas at Dallas
- Catalyst: Palladium (photocatalyst)
- Model: H150 Blue
24.
Intermolecular Crossed [2 + 2] Cycloaddition Promoted by Visible-Light Triplet Photosensitization: Expedient Access to Polysubstituted 2-Oxaspiro[3.3]heptanes
Murray, P. R. D.; Bussink, W. M. M.; Davies, G. H. M.; van der Mei, F. W.; Antropow, A. H.; Edwards, J. T.; D’Agostino, L. A.; Ellis, J. M.; Hamann, L. G.; Romanov-Michailidis, F.; Knowles, R. R.
J. Am. Chem. Soc. 2021. 143 (10), 4055-4063. DOI: 10.1021/jacs.1c01173- Group: Knowles at Princeton University
- Catalyst: Iridium (photocatalyst)
- Model: PR160-440
25.
Diastereoselective and Stereodivergent Synthesis of 2-Cinnamylpyrrolines Enabled by Photoredox-Catalyzed Iminoalkenylation of Alkenes
Shen, X.; Huang, C.; Yuan, X.-A.; Yu, S.
Angew. Chem. Int. Ed. 2021. 60, 9672. DOI: 10.1002/anie.202016941- Group: Yuan at Qufu Normal University & Yu at Nanjing University
- Catalyst: Iridium (photocatalyst)
- Model: PR160-456
26.
Photoredox catalysis on unactivated substrates with strongly reducing iridium photosensitizers
Shon, J.-H.; Kim, D.; Rathnayake, M. D.; Sittel, S.; Weaver, J.; Teets, T. S.
Chem. Sci., 2021. 12, 4069-4078. DOI: 10.1039/D0SC06306A- Group: Teets at University of Houston
- Catalyst: Iridium (photocatalyst)
- Model: H150 Blue
27.
Photoredox Nickel-Catalyzed C–S Cross-Coupling: Mechanism, Kinetics, and Generalization
Qin, Y.; Sun, R.; Gianoulis, N. P.; Nocera, D. G.
J. Am. Chem. Soc. 2021. 143 (4), 2005–2015. DOI: 10.1021/jacs.0c11937.- Group: Nocera at Harvard University
- Catalyst: Iridium (photocatalyst), Nickel
- Model: A160WE Tuna Blue
28.
Minimization of Back-Electron Transfer Enables the Elusive sp3 C-H Functionalization of Secondary Anilines
Zhao, H.; Leonori, D.
ngew. Chem., Int. Ed. Engl. 2021. 60 (14), 7669-7674. DOI: 10.1002/anie.202100051- Group: Leonori at University of Manchester
- Catalyst: Iridium (photocatalyst)
- Model: PR160-440
29.
Visible-Light-Enhanced Cobalt-Catalyzed Hydrogenation: Switchable Catalysis Enabled by Divergence between Thermal and Photochemical Pathways
Mendelsohn, L. N.; MacNeil, C. S.; Tian, L.; Park, Y.; Scholes, G. D.; Chirik, P. J.
ACS Catal. 2021. 11 (3), 1351-1360. DOI: 10.1021/acscatal.0c05136- Group: Chirik at Princeton University
- Catalyst: Cobalt (photocatalyst)
- Model: H150 Blue

30.
Development of a Platform for Near-Infrared Photoredox Catalysis
Ravetz, B. D.; Tay, N. E. S.; Joe, C. L.; Sezen-Edmonds, M.; Schmidt, M. A.; Tan, Y.; Janey, J. M.; Eastgate, M. D.; Rovis. T.
ACS Cent. Sci. 2020. 6 (11), 2053-2059. DOI: 10.1021/acscentsci.0c00948- Group: Rovis at Columbia University
- Catalyst: Osmium Os(II) (photocatalyst)
- Model: PR160L-456, PR160L-660-C, PR160L-740-C
31.
Photoredox-Catalyzed Deaminative Alkylation via C–N Bond Activation of Primary Amines
Ashley, M. A.; Rovis, T.
J. Am. Chem. Soc. 2020. 142 (43), 18310-18316. DOI: 10.1021/jacs.0c08595- Group: Rovis at Columbia University
- Catalyst: Iridium (photocatalyst)
- Model: PR160-427
32.
C(sp3)–H Bond Acylation with N-Acyl Imides under Photoredox/ Nickel Dual Catalysis
Kerackian, T.; Reina, A.; Krachko, T.; Boddaert, H.; Bouyssi, D.; Monteiro, N.; Amgoune, A.
Synlett 2021. 32 (15), 1531-1536. DOI: 10.1055/s-0040-1707301- Group: Amgoune at Claude Bernard University Lyon 1
- Catalyst: Iridium (photocatalyst), Nickel
- Model: A160WE Tuna Blue
33.
Synthesis of azetidines via visible-light-mediated intermolecular [2+2] photocycloadditions
Becker, M.R.; Wearing, E.R.; Schindler, C.S.
Nat. Chem. 2020. 12, 898–905. DOI: 10.1038/s41557-020-0541-1- Group: Schindler at University of Michigan
- Catalyst: Iridium (photocatalyst)
- Model: PR160-427
34.
Visible-Light-Enabled Paternò–Büchi Reaction via Triplet Energy Transfer for the Synthesis of Oxetanes
Rykaczewski, K. A.; Schindler, C. S.
Org. Lett. 2020. 22 (16), 6516-6519. DOI: 10.1021/acs.orglett.0c02316- Group: Schindler at University of Michigan
- Catalyst: Iridium (photocatalyst)
- Model: PR160-456
35.
Mechanistic Analysis of Metallaphotoredox C–N Coupling: Photocatalysis Initiates and Perpetuates Ni(I)/Ni(III) Coupling Activity
Till, N. A.; Tian, L.; Dong, Z.; Scholes, G. D.; MacMillan, D. W. C.
J. Am. Chem. Soc. 2020. 142 (37), 15830-15841. DOI: 10.1021/jacs.0c05901- Group: MacMillan at Princeton University
- Catalyst:Copper, Iridium (photocatalyst)
- Model: A160WE Tuna Blue

36.
Aminoalkyl radicals as halogen-atom transfer agents for activation of alkyl and aryl halides
Constantin, T.; Zanini, M.; Regni, A.; Sheikh, N. S.; Juliá, F.; Leonori, D.
Science 2020. 467 (6481), 1021-1026. DOI: 10.1126/science.aba2419- Group: Leonori at University of Manchester
- Catalyst: Iridium, 4CzIPN (photocatalysts)
- Model: PR160-440, PR160-370
37.
A Metallaphotoredox Strategy for the Cross-Electrophile Coupling of α-Chloro Carbonyls with Aryl Halides
Chen. T. Q.; MacMillan, D. W. C.
Angew. Chem. Int. Ed. 2019. 58, 14584. DOI: 10.1002/anie.201909072- Group: MacMillan at Princeton University
- Catalyst: Iridium (photocatalyst), Nickel
- Model: A160WE Tuna Blue

38.
Enantioselective [2+2] Cycloadditions of Cinnamate Esters: Generalizing Lewis Acid Catalysis of Triplet Energy Transfer
Daub, M. E.; Jung, H.; Lee, B. J.; Won, J.; Baik, M.-H.; Yoon, T. P.
J. Am. Chem. Soc. 2019. 141 (24), 9543–9547. DOI: 10.1021/acs.oprd.8b00018- Group: Yoon at University of Wisconsin−Madison and Baik at Korea Advanced Institute of Science and Technology (KAIST)
- Catalyst: Iridium (photocatalysts)
- Model: H150 Blue

39.
Arylsulfonylacetamides as bifunctional reagents for alkene aminoarylation
Monos, T. M.; McAtee, R. C.; Stephenson, C. R. J.
Science 2018. 361 (6409), 1369-1373. DOI: 10.1126/science.aat2117- Group: Stephenson at University of Michigan
- Catalyst: Iridium (photocatalysts)
- Model: H150 Blue
40.
Photoredox Iridium–Nickel Dual-Catalyzed Decarboxylative Arylation Cross-Coupling: From Batch to Continuous Flow via Self-Optimizing Segmented Flow Reactor
Hsieh, H.-W.; Coley, C. W.; Baumgartner, L. M.; Jensen, K. F.; obinson, R. I.
Org. Process Res. Dev. 2018. 22 (4), 542-550. DOI: 10.1021/acs.oprd.8b00018- Group: Jensen at Massachusetts Institute of Technology & Novartis Institutes for Biomedical Research
- Catalyst: Iridium (photocatalyst)
- Model: PR160-440, H150 Blue

41.
Visible Light-Induced Room-Temperature Heck Reaction of Functionalized Alkyl Halides with Vinyl Arenes/Heteroarenes
Kurandina, D.; Parasram, M.; Gevorgyan, V.
Angew. Chem. Int. Ed. 2017. 56, 14212. DOI: 10.1002/anie.201706554- Group: Gevorgyan at University of Texas at Dallas
- Catalyst: Palladium (photocatalyst)
- Model: H150 Blue

42.
Enabling the Cross-Coupling of Tertiary Organoboron Nucleophiles through Radical-Mediated Alkyl Transfer
Primer, D. N.; Molander, G. A.
J Am Chem Soc. 2017. 139 (29), 9847-9850. DOI: 10.1021/jacs.7b06288- Group: Molande at University of Pennsylvania
- Catalyst: Iridium (photocatalyst), Nickel
- Model: H150 Blue

43.
Amide-directed photoredox-catalysed C-C bond formation at unactivated sp3 C-H bonds
Chu, J.C.; Rovis, T.
Nature 2016. 139 (29), 9847-9850. DOI: 10.1021/jacs.7b06288- Group: Rovis at Columbia University
- Catalyst: Iridium (photocatalyst)
- Model: H150 Blue

44.
Catalytic Olefin Hydroamidation Enabled by Proton-Coupled Electron Transfer
Miller, D. C.; Choi, G. J.; Orbe, H. S.; Knowles, R. R.
J Am Chem Soc. 2015. 137 (42), 13492-13495. DOI: 10.1021/jacs.5b09671- Group: Knowles at Princeton University
- Catalyst: Iridium (photocatalyst)
- Model: H150 Blue
Organic Catalyst

1.
Aminoalkyl radicals as halogen-atom transfer agents for activation of alkyl and aryl halides
Constantin, T.; Zanini, M.; Regni, A.; Sheikh, N. S.; Juliá, F.; Leonori, D.
Science 2020. 367 (6481), 1021-1026. DOI: 10.1126/science.aba2419- Group: Leonori at University of Manchester
- Catalyst: 4CzIPN ,Iridium (photocatalysts)
- Model: PR160-440, PR160-370

Figure S1.

2.
The merger of decatungstate and copper catalysis to enable aliphatic C(sp3)–H trifluoromethylation
Sarver, P.J.; Bacauanu, V.; Schultz, D.M.; DiRocco, D.A.; Lam, Y.H.; Sherer, E.C.; MacMillan, D.W.C.
Nat. Chem. 2020. 12, 459–467. DOI: 10.1038/s41557-020-0436-1- Group: MacMillan at Princeton University
- Catalyst:Copper, Decatungstate (photocatalyst), Copper
- Model: PR160-390

Supplementary Figure 3. Example of reaction setup (0.5 mmol scale).

Supplementary Figure 5. UV light-shielding amber acrylic box used during reactions.

3.
Metal-free photoinduced C(sp3)-H borylation of alkanes
Shu, C.; Noble, A.; Aggarwal, V. K.
Nature 2020. 586 (7831), 714-719. DOI: 10.1038/s41586-020-2831-6- Group: Aggarwal at University of Bristol
- Catalyst: ClB (photocatalyst)
- Model: PR160L-390

Fig. S1. Photochemical set-up

Fig. S4. Scale-up reaction set-up

4.
Organocatalytic Approach to Photochemical Lignin Fragmentation
Yang, C.; Kärkäs, M. D.; Magallanes, G.; Chan, K.; Stephenson, C. R. J.
Org. Lett. 2020. 22 (20), 8082-8085. DOI: 10.1021/acs.orglett.0c03029- Group: Stephenson at University of Michigan
- Catalyst: PhPTH (photocatalyst)
- Model: PR160L-390

Figure S2. Reaction setup of condition A (left) and condition B (right)

5.
Polysulfide Anions as Visible Light Photoredox Catalysts for Aryl Cross-Couplings
Li, H.; Tang, X.; Pang, J. H.; Wu, X.; Yeow, E. K. L.; Wu, J.; Chiba, S.
J. Am. Chem. Soc. 2021. 143 (1), 481-487. DOI: 10.1021/jacs.0c11968- Group: Chiba at Nanyang Technological University
- Catalyst: Tetrasulfide dianions (S42–) (photocatalyst)
- Model: PR160-640-C, PR160-525, PR160-456, PR160-440, PR160-427, PR160-390

Figure S2. Reaction set-up in batch. A. The batch reaction setup. B. The batch reaction set up with light irradiation.
6.
Photocatalyzed Oxidative Decarboxylation Forming Aminovinylcysteine Containing Peptides
Kumashiro, M.; Ohsawa, K.; Doi, T.
Catalysts 2022, 12, 1615. DOI: 10.3390/catal12121615- Group: Doi at Tohoku University
- Catalyst: eosin Y-Na2 (photocatalyst)
- Model: A160WE Tuna Blue

Figure S1. Experimental setup for photocatalyzed oxidative decarboxylation.
7.
A One-Pot Approach for Bio-Based Arylamines via a Combined Photooxidative Dearomatization-Rearomatization Strategy
Afanasenko, A.; Kavun, A.; Thomas, D.; Li, C.-J.
Chem. Eur. J. 2022, 28, e202200309. DOI: 10.1002/chem.202200309- Group: Li at McGill University
- Catalyst: 1,8-HOAQ (photocatalyst)
- Model: PR160L-427, PR160L-440

Figure S1. Pictures of reaction setup.
8.
Photoacid-catalyzed acetalization of carbonyls with alcohols
Saway, J.; Pierrea, A. F.; Badillo, J. J.
Org. Biomol. Chem. 2022, 20, 6188-6192. DOI: 10.1039/D2OB00435F- Group: Badillo at Seton Hall University
- Catalyst: 6-bromo-2-naphthol, Iridium, Ruthenium(photocatalysts)
- Model: A160WE Tuna Blue

Figure S20. General reaction setup.
9.
Photoacid-Catalyzed Friedel–Crafts Arylation of Carbonyls
Salem, Z. M.; Saway, J.; Badillo, J. J.
Org. Lett. 2019, 21 (21), 8528-8532. DOI: 10.1021/acs.orglett.9b02841- Group: Badillo at Seton Hall University
- Catalyst: Schreiner’s thiourea (photocatalyst)
- Model: PR160-370, A160WE Tuna Blue
10.
Radical Perfluoroalkylation Enabled by a Catalytically Generated Halogen Bonding Complex and Visible Light Irradiation
Tasnim, T.; Ryan, C.; Christensen, M. L.; Fennell, C. J.; Pitre, S. P.
Org. Lett. 2022. 24 (1), 446–450. DOI: 10.1021/acs.orglett.1c04139- Group: Pitre at Oklahoma State University
- Catalyst: Ditertbutyl Hydroquinone (DTHQ) (photocatalyst)
- Model: A160WE Tuna Sun
11.
Development of a Quinolinium/Cobaloxime Dual Photocatalytic System for Oxidative C–C Cross-Couplings via H2 Release
Li, J.; Huang, C.-Y.; Han, J.-T.; Li, C.-J.
ACS Catalysis 2021. 11 (22), 14148-14158. DOI: 10.1021/acscatal.1c04073- Group: Li at McGill University
- Catalyst: DPQN 2,4-di-OMe (photocatalyst), cobaloxime
- Model: PR160L-390
12.
Late-Stage N-Me Selective Arylation of Trialkylamines Enabled by Ni/Photoredox Dual Catalysis
Shen, Y.; Rovis, T.
J. Am. Chem. Soc. 2021. 143 (40), 16364-16369. DOI: 10.1021/jacs.1c08157- Group: Rovis at Columbia University
- Catalyst: 4CzIPN (photocatalyst), Nickel
- Model: PR160-440
13.
Ni/Photoredox-Catalyzed Enantioselective Cross-Electrophile Coupling of Styrene Oxides with Aryl Iodides
Lau, S. H.; Borden, M. A.; Steiman, T. J.; Wang, L. S.; Parasram, M.; Doyle, A. G.
J. Am. Chem. Soc. 2021. 143 (38), 15873-15881. DOI: 10.1021/jacs.1c08105- Group: Doyle at University of California, Los Angeles (UCLA) (previously Princeton University)
- Catalyst: 4CzIPN (photocatalyst), Nickel
- Model: PR160-427
14.
Photoredox α-Arylation of Carbonyl Compounds
Hossain, M. M.; Shaikh, A.; Moutet, J.; Gianetti, T.
ChemRxiv 2021. Doi:10.33774/chemrxiv-2021-gsq6s-v2This content is an early or alternative research output and has not been peer-reviewed at the time of posting.
- Group: Gianetti at University of Arizona
- Catalyst: Acridinium (photocatalyst)
- Model: PR160L-518-C, PR160L-467
15.
Unveiling Extreme Photoreduction Potentials of Donor–Acceptor Cyanoarenes to Access Aryl Radicals from Aryl Chlorides
Xu, J.; Cao, J.; Wu, X.; Wang, H.; Yang, X.; Tang, X.; Toh, R.W.; Zhou, R.; Yeow, E.K.L.; and Wu, J.
J. Am. Chem. Soc. 2021. 143(33), 13266–13273. DOI: 10.1021/jacs.1c05994- Group: Zhou at Taiyuan University of Technology & Wu at National University of Singapore
- Catalyst: 3CzEPAIPN (photocatalyst)
- Model: PR160L-456
16.
Depolymerization of Hydroxylated Polymers via Light-Driven C–C Bond Cleavage
Nguyen, S. T.; McLoughlin, E. A.; Cox, J. H.; Fors, B. P.; Knowles, R. R.
J. Am. Chem. Soc. 2021. 143, 31, 12268–12277. DOI: 10.1021/jacs.1c05330- Group: Knowles at Princeton University
- Catalyst: Iridium, Acridinium (photocatalysts)
- Model: H150 Blue
17.
Synthesis of CF3-Containing Spirocyclic Indolines via a Red-Light-Mediated Trifluoromethylation/Dearomatization Cascade
Mei, L.; Moutet, J.; Stull, S. M.; Gianetti, T.L.
J. Org. Chem. 2021. 86 (15), 10640-10653. DOI: 10.1021/acs.joc.1c01313- Group: Gianetti at University of Arizona
- Catalyst: Pr-DMQA (photocatalyst)
- Model: PR160-640-C
18.
From Photoredox Catalysis to the Direct Excitation of EthynylBenziodoXolones: Accessing Alkynylated Quaternary Carbons from Alcohols via Oxalates
Amos, S. G. E.; Cavalli, D.; Le Vaillant, F.; Waser, J.
ChemRxiv 2021.. DOI: 10.33774/chemrxiv-2021-56f12This content is a preprint and has not been peer-reviewed.
- Group: Waser at Ecole polytechnique fédérale de Lausanne (EPFL)
- Catalyst: 4CzIPN (photocatalyst)
- Model: PR160L-440
19.
Pyridylphosphonium Salts as Alternatives to Cyanopyridines in Radical-Radical Coupling Reactions
Greenwood, J. W.; Boyle, B. T.; McNally, A.
Chem. Sci. 2021. 12, 10538-10543. DOI: 10.1039/D1SC02324A- Group: McNally at Colorado State University
- Catalyst: 3DPAFIPN, [Mes-Acr]BF4, Iridium (photocatalysts)
- Model: PR160-456
20.
Site-selective tyrosine bioconjugation via photoredox catalysis for native-to-bioorthogonal protein transformation
Li, B. X.; Kim, D. K.; Bloom, S.; Huang, R. Y.-C.; Qiao, J. X.; Ewing, W. R.; Oblinsky, D. G.; Scholes, G. D.; MacMillan, D. W. C.
Nat. Chem. 2021. 13, 902–908. DOI: 10.1038/s41557-021-00733-y- Group: MacMillan at Princeton University
- Catalyst: Lumiflavin (photocatalyst)
- Model: PR160-440
21.
Photocatalytic carbocarboxylation of styrenes with CO2 for the synthesis of γ-aminobutyric esters
Hahm, H.; Kim, J.; Ryoo, J. Y.; Han, M. S.; Hong, S.
Org. Biomol. Chem. 2021. 19, 6301-6312. DOI: 10.1039/D1OB00866H- Group: Hong at Gwangju Institute of Science and Technology
- Catalyst: 4CzBnBN (photocatalyst)
- Model: A80 Tuna Blue
22.
Visible-Light Driven Organo-photocatalyzed Multicomponent Reaction for C(sp3)−H Alkylation of Phosphoramides with in situ Generated Michael Acceptors
Ghosh, K. G.; Das, D.; Chandu, P.; Sureshkumar, D.
Eur. J. Org. Chem. 2021. 2021, 4293-4298. DOI: 10.1002/ejoc.202100561- Group: Sureshkumar at Indian Institute of Science Education and Research Kolkata
- Catalyst: Acr-mes+ClO4- (photocatalyst)
- Model: PR160L-456
23.
A radical approach for the selective C–H borylation of azines
Kim, J. H.; Constantin, T.; Simonetti, M.; Llaveria, J.; Sheikh, N. S.; Leonori, D.
Nature 2021. 595, 677–683. DOI: 10.1038/s41586-021-03637-6- Group: Leonori at University of Manchester
- Catalyst: 4CzIPN (photocatalysts)
- Model: PR160-440
24.
Organic thermally activated delayed fluorescence (TADF) compounds used in photocatalysis
Brydena, M. A.; Zysman-Colman, E.
Chem. Soc. Rev. 2021. 50, 7587-7680. DOI: 10.1039/D1CS00198A.- Group: Zysman-Colman at University of St Andrews
- Catalyst: 4DPAIPN (photocatalysts)
- Model: PR160-456
25.
Accessing Aliphatic Amines in C–C Cross-Couplings by Visible Light/Nickel Dual Catalysis
Dong, W.; Badir, S. O.; Zhang, X.; Molander, G. A.
Org. Lett. 2021. 23 (11), 4250–4255. DOI: 10.1021/acs.orglett.1c01207.- Group: Molander at University of Pennsylvania
- Catalyst: 4CzIPN (photocatalysts), Nickel
- Model: H150 Blue
26.
Photoredox Propargylation of Aldehydes Catalytic in Titanium
Calogero, F.; Gualandi, A.; Di Matteo, M.; Potenti S.; Fermi, A.; Bergamini, G.; Cozzi, P. G.
J. Org. Chem. 2021. 86 (9), 7002–7009. DOI: 10.1021/acs.joc.1c00521- Group: Cozzi at Università di Bologna
- Catalyst: 3DPAFIPN (photocatalysts), Titanium
- Model: PR160L-456
27.
Diaryl Ether Formation Merging Photoredox and Nickel Catalysis
Liu, L.; Nevado, C.
Organometallics 2021. 40 (14), 2188-2193. DOI: 10.1021/acs.organomet.1c00018- Group: Nevado at University of Zurich
- Catalyst: 4CzIPN, Iridium (photocatalysts), Nickel
- Model: H150 Blue
28.
Chromoselective Photocatalysis Enables Stereocomplementary Biocatalytic Pathways
Schmermund, L.; Reischauer, S.; Bierbaumer, S.; Winkler, C. K.;Diaz-Rodriguez, A.; Edwards, L. J.;Kara, S.; Mielke, T.; Cartwright, J.; Grogan, G.; Pieber, B.; Kroutil, W.
Angew. Chem. Int. Ed. 2021. 60, 6965. DOI: 10.1002/anie.202100164- Group: Pieber at Max Planck Institute of Colloids and Interfaces & Kroutil at University of Graz
- Catalyst: CN-OA-m (photocatalysts)
- Model: PR160-440, PR160-525
29.
Visible-Light-Driven Organophotocatalyzed Mono-, Di-, and Tri-C(sp3)–H Alkylation of Phosphoramides
Ghosh, K. G.; Das, D.; Chandu, P.; Sureshkumar, D.
J. Org. Chem. 2021. 86 (3), 2644-2657. DOI: 10.1021/acs.joc.0c02695- Group: Sureshkumar at Indian Institute of Science Education and Research Kolkata
- Catalyst: Eosin-Y, Acridinium Acr-mes+ClO4- (photocatalysts)
- Model: PR160L-456

30.
Visible-Light-Mediated Oxidative Debenzylation Enables the Use of Benzyl Ethers as Temporary Protecting Groups
Cavedon, C.; Sletten, E. T.; Madani, A.; Niemeyer, O.; Seeberger, P. H.; Pieber, B.
Org. Lett. 2021. 23 (2), 514-518. DOI: 10.1021/acs.orglett.0c04026- Group: Pieber at Max Planck Institute of Colloids and Interfaces
- Catalyst: DDQ, TBN (photocatalysts)
- Model: PR160L-440, PR160L-525
31.
Photoenzymatic Reductions Enabled by Direct Excitation of Flavin-Dependent “Ene”-Reductases
Sandoval, B. A.; Clayman, P. D.; Oblinsky, D. G.; Oh, S.; Nakano, Y.; Bird, M.; Scholes, G. D.; Hyster, T. K.
J. Am. Chem. Soc. 2021. 143 (4), 1735-1739. DOI: 10.1021/jacs.0c11494- Group: Hyster at Princeton University
- Catalyst: Flavin-Dependent “Ene”-Reductases (photocatalyst)
- Model: PR160L-390
32.
Site-Selective Functionalization of Methionine Residues via Photoredox Catalysis
Kim, J.; Li, B. X.; Huang, R. Y.-C.; Qiao, J. X.; Ewing, W. R.; MacMillan, D. W. C.
J. Am. Chem. Soc. 2020. 142 (51), 21260-21266. DOI: 10.1021/jacs.0c09926- Group: MacMillan at Princeton University
- Catalyst: Lumiflavin (photocatalyst)
- Model: PR160-440
33.
Nucleophilic Aromatic Substitution of Unactivated Fluoroarenes Enabled by Organic Photoredox Catalysis
Pistritto, V. A.; Schutzbach-Horton, M. E.; Nicewicz, D. A.
J. Am. Chem. Soc. 2020. 142 (40), 17187-17194. DOI: 10.1021/jacs.0c09296- Group: Nicewicz at University of North Carolina at Chapel Hill
- Catalyst: Xanthylium tetrafluoroborate (photocatalyst)
- Model: PR160-427, PR160-456
34.
Organocatalyzed Photoredox Radical Ring-Opening Polymerization of Functionalized Vinylcyclopropanes
Chen, D.-F.; Bernsten, S.; Miyake, G. M.
Macromolecules 2020. 53 (19), 8352-8359. DOI: 10.1021/acs.macromol.0c01367- Group: Miyake at Colorado State University
- Catalyst: N,N-diaryl dihydrophenazines, 3,7-di(4-biphenyl)-Nnaphthylphenoxazine and EtVCP-C2 (photocatalysts)
- Model: H150 Blue
35.
Overcoming limitations in dual photoredox/nickel-catalysed C–N cross-couplings due to catalyst deactivation
Gisbertz, S.; Reischauer, S.; Pieber, B.
Nat. Catal. 2020. 3, 611–620. DOI: 10.1038/s41929-020-0473-6- Group: Pieber at Max Planck Institute of Colloids and Interfaces
- Catalyst: Carbon nitride CN-OA-m (photocatalyst), Nickel
- Model: PR160-370
36.
Helical Carbenium Ion: A Versatile Organic Photoredox Catalyst for Red-Light-Mediated Reactions
Mei, L.; Veleta, J. M.; Gianetti T. L.
J. Am. Chem. Soc. 2020. 142 (28), 12056-12061. DOI: 10.1021/jacs.0c05507- Group: Gianetti at University of Arizona
- Catalyst: Pr-DMQA (photocatalyst)
- Model: PR160L-640-C

37.
Discovery and characterization of an acridine radical photoreductant.
MacKenzie, I. A.; Wang, L.; Onuska, N. P. R.; Williams, O. F.; Begam, K.; Moran, A. M.; Dunietz, B. D.; Nicewicz, D. A.
Nature 2020. 580, 76–80. DOI: 10.1038/s41586-020-2131-1- Group: Nicewicz at University of North Carolina at Chapel Hill
- Catalyst: di-tBu-Mes-Acr+BF4, Mes-Acr-BF4 (photocatalyst)
- Model: PR160-390, PR160-467

38.
The merger of decatungstate and copper catalysis to enable aliphatic C(sp3)–H trifluoromethylation
Sarver, P.J.; Bacauanu, V.; Schultz, D.M.; DiRocco, D.A.; Lam, Y.H.; Sherer, E.C.; MacMillan, D.W.C.
Nat. Chem. 2020. 12, 459–467. DOI: 10.1038/s41557-020-0436-1- Group: MacMillan at Princeton University
- Catalyst: Decatungstate (photocatalyst), Copper
- Model: PR160-390
39.
Bromine Radical Catalysis by Energy Transfer Photosensitization
Chen, D.-F.; Chrisman, C. H.; Miyake, G. M.
ACS Catal. 2020. 10 (4), 2609-2614. DOI: 10.1021/acscatal.0c00281- Group: Miyake at Colorado State University
- Catalyst: 4CzIPN, Cinnamyl bromide (photocatalyst)
- Model: H150 Blue
40.
A General Strategy for Aliphatic C–H Functionalization Enabled by Organic Photoredox Catalysis
Margrey, K. A.; Czaplyski, W. L.; Nicewicz, D. A.; Alexanian, E. J.
J. Am. Chem. Soc. 2018. 140 (12), 4213–4217. DOI: 10.1021/jacs.8b00592- Group: Nicewicz & Alexanian at University of North Carolina at Chapel Hill
- Catalyst: Acridinium (photocatalyst)
- Model: H150 Blue
Direct Photoexcitation

1.
Regiodivergent Photocyclization of Dearomatized Acylphloroglucinols: Asymmetric Syntheses of (−)-Nemorosone and (−)-6-epi-Garcimultiflorone A
Wen, S.; Boyce, J. H.; Kandappa, S. K.; Sivaguru, J.; Porco, J. A.
J. Am. Chem. Soc. 2019. 141 (28), 11315-11321. DOI: 10.1021/jacs.9b05600- Group: Porco at Boston University
- Model: PR160-390


2.
Photochemically derived 1-aminonorbornanes provide structurally unique succinate dehydrogenase inhibitors with in vitro and in planta activity
Staveness, D.; Breunig, M.; Ortiz, V.; Sang, H.; Collins, J. L.; McAtee, R. C.; Chilvers, M. I.; Stephenson, C. R. J.
Cell Rep. Phys. Sci. 2021. 2, 100548. DOI: 10.1016/j.xcrp.2021.100548.- Group: Stephenson at University of Michigan
- Model: PR160-390

Figure S4. Batch Processing Equipment. Left: Full apparatus in use; Right: Zoom in on lamp orientation while in use (Kessil PR160-390nm pictured).

3.
Photochemical halogen-bonding assisted generation of vinyl and sulfur-centered radicals: stereoselective catalyst-free C(sp2)–S bond forming reactions
Piedra, H. F.; Plaza, M.
Chem. Sci., 2023. Advance Article. DOI: 10.1039/D2SC05556B- Group: Plaza at University of Oviedo
- Model: PR160L-440, PR160L-456

4.
Photochemical C(sp2)−H Pyridination via Arene–Pyridinium Electron Donor–Acceptor Complexes
Lasky, M. R.; Salvador, T. K.; Mukhopadhyay, S.; Remy, M. S.; Vaid, T. P.; Sanford, M. S.
Angew. Chem. Int. Ed. 2022, 61, e202208741; Angew. Chem. 2022, 134, e202208741. DOI: 10.1002/anie.202208741- Group: Sanford at University of Michigan
- Model: PR160L-390, PR160L-440

Figure S14. The photochemical experimental setup for SNAr pyridination reactions using an EvoluChemTM PhotoRedOx Duo (HCK1006-01-023) box equipped with two 390 nm Kessil LEDs (PR160L) and air cooling. These photographs were taken in the Sanford Laboratory by Matthew R. Lasky
5.
Photoexcited nitroarenes for the oxidative cleavage of alkenes
Ruffoni, A.; Hampton, C.; Simonetti, M.; Leonori, D.
Nature 2022. 610, 81–86. DOI:10.1038/s41586-022-05211-0- Group: Leonori at RWTH Aachen University
- Model: PR160L-390
6.
Photoinduced Oxygen Transfer Using Nitroarenes for the Anaerobic Cleavage of Alkenes
Wise, D. E.; Gogarnoiu, E. S.; Duke, A. D.; Paolillo, J. M.; Vacala, T. L.; Hussain, W. A.; Parasram, M.
J. Am. Chem. Soc. 2022. 144, 15437–15442. DOI: 10.1021/jacs.2c05648- Group: Parasram at New York University
- Model: PR160L-390

7.
Solid-Phase Photochemical Peptide Homologation Cyclization
Elbaum, M. B.; Elkhalifa, M. A.; Molander, G. A.; Chenoweth, D. M.
Org. Lett. 2022. 24, 28, 5176–5180. DOI: 10.1021/acs.orglett.2c020128.
Scaffold hopping by net photochemical carbon deletion of azaarenes
Woo, J.; Christian, A. H.; Burgess, S. A.; Jiang, Y.; 3, Mansoor, U. F.; Levin, M. D.
Science. 2022, 376 (6592), 527-532. DOI: 10.1126/science.abo4282- Group: Levin at University of Chicago
- Model: PR160-390

Figure S1: 390 nm LED Setup for Photochemical Carbon Deletion
9.
Development and Scale-Up of a Novel Photochemical C–N Oxidative Coupling
Robinson, A.; Dieckmann, M.; Krieger, J.-P.; Vent-Schmidt, T.; Marantelli, D.; Kohlbrenner, R.; Gribkov, D.; Simon, L. L.; Austrup, D.; Rod, A.; Bochet, C. G.
Org. Process Res. Dev. 2021. 25 (10), 2205-2220. DOI: 10.1021/acs.oprd.1c00244- Group: Dieckmann at Syngenta Group
- Model: PR160-467
10.
Direct Photoexcitation of Ethynylbenziodoxolones: An Alternative to Photocatalysis for Alkynylation Reactions
Amos, S.G.E.; Cavalli, D.; Le Vaillant, F.; Waser, J.
Angew. Chem. Int. Ed. 2021. 60, 23827. DOI: 10.1002/anie.202110257- Group: Waser at Ecole polytechnique fédérale de Lausanne (EPFL)
- Model: PR160L-440
11.
Photoredox-Mediated Hydroalkylation and Hydroarylation of Functionalized Olefins for DNA-Encoded Library Synthesis
Badir, S.O.; Lipp, A.; Krumb, M.; Cabrera-Afonso, M.J.; Kammer, L.; Wu, V.; Huang, M.; Marcaurelle, L.; Molander, G. A.
Chem. Sci., 2021. 12, 12036-12045. DOI: 10.1039/D1SC03191K- Group: Molander at University of Pennsylvania
- Model: PR160-456
12.
Photocatalyst-free, visible-light-mediated nickel catalyzed carbon–heteroatom cross-couplings
Cavedon, C.; Gisbertz, S.; Vogl, S.; Richter, N.; Schrottke, S.; Teutloff, C.; Seeberger, P. H.; Thomas, A.; Pieber, B.
ChemRxiv 2021. DOI: 10.33774/chemrxiv-2021-kt2wrThis content is an early or alternative research output and has not been peer-reviewed at the time of posting.
- Group: Pieber at Max Planck Institute of Colloids and Interfaces
- Model: PR160L-440, PR160L-525
13.
From Photoredox Catalysis to the Direct Excitation of EthynylBenziodoXolones: Accessing Alkynylated Quaternary Carbons from Alcohols via Oxalates
Amos, S. G. E.; Cavalli, D.; Le Vaillant, F.; Waser, J.
ChemRxiv 2021. DOI: 10.33774/chemrxiv-2021-56f12This content is a preprint and has not been peer-reviewed.
- Group: Waser at Ecole polytechnique fédérale de Lausanne (EPFL)
- Model: PR160L-440
14.
Biocompatible Photoinduced Alkylation of Dehydroalanine for the Synthesis of Unnatural α-Amino Acids
Delgado, J. A. C.; Correia, J. T. M.; Pissinati, E. F.; Paixão, M. W.
Org. Lett. 2021. 23 (13), 5251–5255. DOI: 10.1021/acs.orglett.1c01781- Group: Paixão at Federal University of São Carlos—UFSCar
- Model: H150 Blue
15.
Nickel-Catalyzed Decarboxylative Cross-Coupling of Bicyclo[1.1.1]pentyl Radicals Enabled by Electron Donor–Acceptor Complex Photoactivation
Polites, V. C.; Badir, S. O.; Keess, S.; Jolit, A.; Molander, G. A.
Org. Lett. 2021. 23 (12), 4828-4833. DOI: 10.1021/acs.orglett.1c01558- Group: Molander at University of Pennsylvania
- Model: PR160L-390
16.
Catalyst-Free Decarbonylative Trifluoromethylthiolation Enabled by Electron Donor-Acceptor Complex Photoactivation
Lipp, A.; Badir, S. O.; Dykstra, R.; Gutierrez, O.; Molander, G. A.
Adv. Synth. Catal. 2021. 363, 3507. DOI: 10.1002/adsc.202100469- Group: Molander at University of Pennsylvania
- Model: PR160L-390, A160WE Tuna Blue
17.
Photo-Induced Arylation of Carbazoles With Aryldiazonium Salts
Maeda, B.; Mori, G.; Sakakibara, Y.; Yagi, A.; Murakami, K.; Itami, K.
Asian J. Org. Chem. 2021. 10, 1428. DOI: 10.1002/ajoc.20210019118.
Lewis Acid Activation of Fragment-Coupling Reactions of Tertiary Carbon Radicals Promoted by Visible-Light Irradiation of EDA Complexes
Pitre, S. P.; Allred, T. K.; Overman, L. E.
Org. Lett. 2021. 23 (3), 1103–1106. DOI: 10.1021/acs.orglett.1c00023- Group: Overman at University of California, Irvine
- Model: H150 Blue
19.
Photo-mediated selective deconstructive geminal dihalogenation of trisubstituted alkenes
Wang, H.; Toh, R. W.; Shi, X.; Wang, T.; Cong, X.; Wu, J.
Nat. Commun. 2020. 11, 4462. DOI: 10.1038/s41467-020-18274-2- Group: Wu at National University of Singapore
- Model: PR160-456
20.
Generation of Alkyl Radical through Direct Excitation of Boracene-Based Alkylborate
Sato, Y.; Nakamura, K.; Sumida, Y.; Hashizume, D.; Hosoya, T.; Ohmiya, H.
J. Am. Chem. Soc. 2020. 142 (22), 9938-9943. DOI: 10.1021/jacs.0c04456- Group: Ohmiya at Kanazawa University
- Model: PR160L-440
21.
Direct Decarboxylative Functionalization of Carboxylic Acids via O–H Hydrogen Atom Transfer
Na, C. G.; Ravelli, D.; Alexanian, E. J.
J. Am. Chem. Soc. 2020. 142 (1), 44-49. DOI: 10.1021/jacs.9b10825- Group: Alexanian at University of North Carolina at Chapel Hill
- Model: PR160-440

22.
Exploiting Imine Photochemistry for Masked N-Centered Radical Reactivity
Staveness, D.; Collins, J. L.; McAtee, R. C.; Stephenson, C. R. J.
Angew. Chem. Int. Ed. 2019. 58, 19000. DOI: 10.1002/anie.201909492- Group: Stephenson at University of Michigan
- Model: PR160-390
Beyond Blue

1.
Development of a Platform for Near-Infrared Photoredox Catalysis
Ravetz, B. D.; Tay, N. E. S.; Joe, C. L.; Sezen-Edmonds, M.; Schmidt, M. A.; Tan, Y.; Janey, J. M.; Eastgate, M. D.; Rovis. T.
ACS Cent. Sci. 2020. 6 (11), 2053-2059. DOI: 10.1021/acscentsci.0c00948- Group: Rovis at Columbia University
- Catalyst: Os(II) photosensitizers
- Model: PR160L-456, PR160L-660-C, PR160L-740-C

2.
Implantable optical fibers for immunotherapeutics delivery and tumor impedance measurement
Chin, A. L.; Jiang, S.; Jang, E.; Niu, L.; Li, L.; Jia, X.; Tong, R.
Nat. Commun. 2021. 12, 5138. DOI: 10.1038/s41467-021-25391-z- Group: Tong at Virginia Polytechnic Institute and State University
- Model: H150 Red (600-700nm)
3.
Photoredox α-Arylation of Carbonyl Compounds
Hossain, M. M.; Shaikh, A.; Moutet, J.; Gianetti, T.
ChemRxiv 2021. Doi:10.33774/chemrxiv-2021-gsq6s-v2This content is an early or alternative research output and has not been peer-reviewed at the time of posting.
- Group: Gianetti at University of Arizona
- Catalyst: Acridinium (photocatalyst)
- Model: PR160L-518-C, PR160L-467
4.
Direct 3-Acylation of Indolizines by Carboxylic Acids for the Practical Synthesis of Red Light-Releasable Caged Carboxylic Acids
Watanabe, K.; Terao, N.; Niwa, T.; Hosoya, T.
J. Org. Chem. 2021. 86 (17), 11822-11834. DOI: 10.1021/acs.joc.1c01244- Group: Hosoya at RIKEN
- Catalyst: Methylene blue (photocatalyst)
- Model: PR160L-440
5.
Bringing Earth-Abundant Plasmonic Catalysis to Light: Gram-Scale Mechanochemical Synthesis and Tuning of Activity by Dual Excitation of Antenna and Reactor Sites
Quiroz, J.; de Oliveira, P. F. M.; Shetty, S.; Oropeza, F. E.; de la Peña O’Shea, V. A.; Rodrigues, L. C. V.; Rodrigues, M. P. de S.; Torresi, R. M.; Emmerling, F.; Camargo, P. H. C.
ACS Sustain. Chem. Eng. 2021. 9 (29), 9750-9760. DOI: 10.1021/acssuschemeng.1c02063- Group: Camargo at University of Helsinki
- Catalyst: Plasmonic Au/MoO3_P (photocatalyst)
- Model: PR160L-525, PR160L-740-C
6.
Photocatalyst-free, visible-light-mediated nickel catalyzed carbon–heteroatom cross-couplings
Cavedon, C.; Gisbertz, S.; Vogl, S.; Richter, N.; Schrottke, S.; Teutloff, C.; Seeberger, P. H.; Thomas, A.; Pieber, B.
ChemRxiv 2021. DOI: 10.33774/chemrxiv-2021-kt2wrThis content is an early or alternative research output and has not been peer-reviewed at the time of posting.
- Group: Pieber at Max Planck Institute of Colloids and Interfaces
- Catalyst: Nickel
- Model: PR160L-440, PR160L-525
7.
Synthesis of CF3-Containing Spirocyclic Indolines via a Red-Light-Mediated Trifluoromethylation/Dearomatization Cascade
Mei, L.; Moutet, J.; Stull, S. M.; Gianetti, T.L.
J. Org. Chem. 2021. 86 (15), 10640-10653. DOI: 10.1021/acs.joc.1c01313- Group: Gianetti at University of Arizona
- Catalyst: Pr-DMQA (photocatalyst)
- Model: PR160-640-C

8.
Visible-Light-Mediated Oxidative Debenzylation Enables the Use of Benzyl Ethers as Temporary Protecting Groups
Cavedon, C.; Sletten, E. T.; Madani, A.; Niemeyer, O.; Seeberger, P. H.; Pieber, B.
Org. Lett. 2021. 23 (2), 514-518. DOI: 10.1021/acs.orglett.0c04026- Group: Pieber at Max Planck Institute of Colloids and Interfaces
- Catalyst: DDQ, TBN (photocatalysts)
- Model: PR160L-440, PR160L-525

9.
Polysulfide Anions as Visible Light Photoredox Catalysts for Aryl Cross-Couplings
Li, H.; Tang, X.; Pang, J. H.; Wu, X.; Yeow, E. K. L.; Wu, J.; Chiba, S.
J. Am. Chem. Soc. 2021. 143 (1), 481-487. DOI: 10.1021/jacs.0c11968- Group: Chiba at Nanyang Technological University
- Catalyst: Tetrasulfide dianions (S42–) (photocatalyst)
- Model: PR160-640-C, PR160-525, PR160-456, PR160-440, PR160-427, PR160-390
10.
Modular, Self-Assembling Metallaphotocatalyst for Cross-Couplings Using the Full Visible-Light Spectrum
Reischauer, S.; Strauss, V.; Pieber, B.
ACS Catal. 2020. 10 (22), 13269-13274. DOI: 10.1021/acscatal.0c03950- Group: Pieber at Max Planck Institute of Colloids and Interfaces
- Catalyst: Nickel, TiO2, Fluorescein sodium, Coumarin 343, Ruthenium (photocatalysts)
- Model: PR160-440, PR160-525, H160 Tuna Flora (Red 666 nm)
11.
Helical Carbenium Ion: A Versatile Organic Photoredox Catalyst for Red-Light-Mediated Reactions
Mei, L.; Veleta, J. M.; Gianetti T. L.
J. Am. Chem. Soc. 2020. 142 (28), 12056-12061. DOI: 10.1021/jacs.0c05507- Group: Gianetti at University of Arizona
- Catalyst: Pr-DMQA (photocatalyst)
- Model: PR160L-640-C
12.
Photoredox catalysis using infrared light via triplet fusion upconversion
Ravetz, B. D.; Pun, A. B.; Churchill, E. M.; Congreve, D. N.; Rovis, T.; Campos, L. M.
Nature 2019. 565, 343-346. DOI: 10.1038/s41586-019-1122-6- Group: Rovis at Columbia University
- Catalyst:
- Model: PR160L-640-C
Photoreactor Design

1.
Exploiting Imine Photochemistry for Masked N-Centered Radical Reactivity
Staveness, D.; Collins, J. L.; McAtee, R. C.; Stephenson, C. R. J.
Angew. Chem. Int. Ed. 2019. 58, 19000. DOI: 10.26434/chemrxiv.7390421.v1This content is an early or alternative research output and has not been peer-reviewed at the time of posting.
- Group: Stephenson at University of Michigan
- Model: PR160-390

Figure S2. Full Apparatus. Top: Generic schematic of flow apparatus; Middle: Full apparatus with key parts labeled.

2.
Polysulfide Anions as Visible Light Photoredox Catalysts for Aryl Cross-Couplings
Li, H.; Tang, X.; Pang, J. H.; Wu, X.; Yeow, E. K. L.; Wu, J.; Chiba, S.
J. Am. Chem. Soc. 2021. 143 (1), 481-487. DOI: 10.1021/jacs.0c11968- Group: Chiba at Nanyang Technological University
- Catalyst: Tetrasulfide dianions (S42–) (photocatalyst)
- Model: PR160-640-C, PR160-525, PR160-456, PR160-440, PR160-427, PR160-390

Figure S8 The flow apparatus. A. The whole set-up. B. The whole set-up with light irradiation. C. The tubing on a glass cylinder.
3.
3D Printed Reactors and Kessil Lamp Holders for Flow Photochemistry: Design and System Standardization
Penny, M.; Hilton, S.
ChemRxiv 2021. DOI: 10.33774/chemrxiv-2021-kmxgdThis content is a preprint and has not been peer-reviewed.
- Group: Hilton at University College London
- Model: A160WE Tuna Blue

Supplementary Figure 1 Image showing the photoflow set-up with the protective cover removed for visualisation of location of the Kessil lamp (left) and the realised system (right).
4.
Rapid Optimization of Photoredox Reactions for Continuous-Flow Systems Using Microscale Batch Technology
González-Esguevillas, M.; Fernández, D. F.; Rincón, J. A.; Barberis, M.; de Frutos, O.; Carlos Mateos, C.; García-Cerrada, S.; Agejas, J.; MacMillan, D. W. C.
ACS Cent. Sci. 2021. 7 (7), 1126-1134. DOI: 10.1021/acscentsci.1c00303- Group: MacMillan at Princeton University
- Catalyst: Iridium, 4CzIPN (photocatalysts)
- Model: PR160-390, PR160-427, PR160-440, PR160-456, PR160-467

*Modified from Fig. S1. Part 3. g) placing the stand inside of the box, h) plate inside of the box, i) top mirror with a fan on the center, j) box closed, k and l) FLOSIM device on.

5.
Photocatalytic C-H activation and the subtle role of chlorine radical complexation in reactivity
Yang Q.; Wang Y. H.; Qiao Y.; Gau M.; Carroll P. J.; Walsh P. J.; Schelter E. J.
Science 2021. 372 (6544), 847-852. DOI: 10.1126/science.abd8408- Group: Schelter at University of Pennsylvania
- Catalyst: Cerium (photocatalyst)
- Model: PR160-467, PR160-390

Figure S3. (A)Pictures of the high-pressure photoreactor from front. (B) Disassembling of the photoreactor. (C) Reaction performed using a high-pressure photo-reactor.
6.
A 3D-Printed Open Access Photoreactor Designed for Versatile Applications in Photoredox- and Photoelectrochemical Synthesis
Schiel, F.; Peinsipp, C.; Kornigg, S.; Böse, D.
ChemPhotoChem 2021. 5, 431–437. DOI: 10.1002/cptc.202000291- Group: Boehringer Ingelheim RCV GmbH & Co KG
- Model: PR160L-440
7.
Visible-Light-Mediated Oxidative Debenzylation Enables the Use of Benzyl Ethers as Temporary Protecting Groups
Cavedon, C.; Sletten, E. T.; Madani, A.; Niemeyer, O.; Seeberger, P. H.; Pieber, B.
Org. Lett. 2021. 23 (2), 514-518. DOI: 10.1021/acs.orglett.0c04026- Group: Pieber at Max Planck Institute of Colloids and Interfaces
- Catalyst: DDQ, TBN (photocatalysts)
- Model: PR160L-440, PR160L-525

Figure S4. Experimental setup for flow experiments.

Figure S5. Experimental setup for extended retention time flow experiment.

8.
Organocatalytic Approach to Photochemical Lignin Fragmentation
Yang, C.; Kärkäs, M. D.; Magallanes, G.; Chan, K.; Stephenson, C. R. J.
Org. Lett. 2020. 22 (20), 8082-8085. DOI: 10.1021/acs.orglett.0c03029- Group: Stephenson at University of Michigan
- Catalyst: PhPTH (photocatalyst)
- Model: PR160L-390

Figure S3. Flow reaction setup when light off (left) and light on (right)

9.
Nucleophilic (Radio)Fluorination of Redox-Active Esters via Radical-Polar Crossover Enabled by Photoredox Catalysis
Webb, E. W.; Park, J. B.; Cole, E. L.; Donnelly, D. J.; Bonacorsi, S. J.; Ewing, W. R.; Doyle, A. G.
J. Am. Chem. Soc. 2020. 142 (20), 9493-9500. DOI: 10.1021/jacs.0c03125- Group: Doyle at University of California, Los Angeles (UCLA) (previously Princeton University)
- Catalyst: Iridium (photocatalyst)
- Model: H150 Blue, PR160-440

Figure S14. Photocatalytic Radiochemical Fluorination Setup and Apparatus.
10.
Regiodivergent Photocyclization of Dearomatized Acylphloroglucinols: Asymmetric Syntheses of (−)-Nemorosone and (−)-6-epi-Garcimultiflorone A
Wen, S.; Boyce, J. H.; Kandappa, S. K.; Sivaguru, J.; Porco, J. A.
J. Am. Chem. Soc. 2019. 141 (28), 11315-11321. DOI: 10.1021/jacs.9b05600- Group: Porco at Boston University
- Model: PR160-390

Figure S2. Temperature-controlled flow photoreactor II.
11.
Photoredox Iridium–Nickel Dual-Catalyzed Decarboxylative Arylation Cross-Coupling: From Batch to Continuous Flow via Self-Optimizing Segmented Flow Reactor
Hsieh, H.-W.; Coley, C. W.; Baumgartner, L. M.; Jensen, K. F.; obinson, R. I.
Org. Process Res. Dev. 2018. 22 (4), 542-550. DOI: 10.1021/acs.oprd.8b00018- Group: Jensen at Massachusetts Institute of Technology & Novartis Institutes for Biomedical Research
- Catalyst: Iridium (photocatalyst)
- Model: PR160-440, H150 Blue