Publications

Metal Catalyst

Featured
1.

Photocatalytic C-H activation and the subtle role of chlorine radical complexation in reactivity

Yang Q.; Wang Y. H.; Qiao Y.; Gau M.; Carroll P. J.; Walsh P. J.; Schelter E. J.
Science 2021. 372 (6544), 847-852. DOI: 10.1126/science.abd8408
  • Group: Schelter at University of Pennsylvania
  • Catalyst: Cerium (photocatalyst)
  • Model: PR160-467, PR160-390

Figure S2. A picture of the photoredox setup used in batch reactions.
Science 2021. 372 (6544), 847-852. DOI: 10.1126/science.abd8408

Featured
2.

Nucleophilic (Radio)Fluorination of Redox-Active Esters via Radical-Polar Crossover Enabled by Photoredox Catalysis

Webb, E. W.; Park, J. B.; Cole, E. L.; Donnelly, D. J.; Bonacorsi, S. J.; Ewing, W. R.; Doyle, A. G.
J. Am. Chem. Soc. 2020. 142 (20), 9493-9500. DOI: 10.1021/jacs.0c03125
  • Group: Doyle at University of California, Los Angeles (UCLA) (previously Princeton University)
  • Catalyst: Iridium (photocatalyst)
  • Model: H150 Blue, PR160-440

Figure S1. Set-up for Screening and Isolation Scale Fluorination Reactions. Left: Isolation (left) and screening scale (right) in photocatalysis set up. Right: Screening-multiple vials per lamp, isolation-one vial per lamp.
J. Am. Chem. Soc. 2020. 142 (20), 9493-9500. DOI: 10.1021/jacs.0c03125

Featured
3.

Alcohols as Latent Coupling Fragments for Metallaphotoredox Catalysis: sp3–sp2 Cross-Coupling of Oxalates with Aryl Halides

Zhang, X.; MacMillan, D. W. C.
J. Am. Chem. Soc. 2016. 138 (42), 13862-13865. DOI: 10.1021/jacs.6b09533
  • Group: MacMillan at Princeton University
  • Catalyst: Iridium (photocatalyst), Nickel
  • Model: H150 Blue

Figure S1 Top view. Four 34 W Kessil KSH150B Blue LED Grow Light 150 are positioned on all four sides of the box covered with aluminum foil.
Figure S2 Set-up for Screening and Isolation Scale Fluorination Reactions. Left: Isolation (left) and screening scale (right) in photocatalysis set up. Right: Screening-multiple vials per lamp, isolation-one vial per lamp.
J. Am. Chem. Soc. 2016. 138 (42), 13862-13865. DOI: 10.1021/jacs.6b09533

Featured
4.

Direct C(sp3)–H Cross Coupling Enabled by Catalytic Generation of Chlorine Radicals

Shields , B. J.; Doyle, A. G.
J. Am. Chem. Soc. 2016. 138 (39), 12719-12722. DOI: 10.1021/jacs.6b08397
  • Group: Doyle at University of California, Los Angeles (UCLA) (previously Princeton University)
  • Catalyst: Iridium (photocatalyst), Nickel
  • Model: H150 Blue

Featured
5.

Enantioselective Decarboxylative Arylation of α-Amino Acids via the Merger of Photoredox and Nickel Catalysis

Zuo, Z.; Cong, H.; Li, W.; Choi, J.; Fu, G. C.; MacMillan, D. W. C.
J. Am. Chem. Soc. 2016. 138 (6), 1832-1835. DOI: 10.1021/jacs.5b13211
  • Group: MacMillan at Princeton University
  • Catalyst: Iridium (photocatalyst), Nickel
  • Model: H150 Blue

6.

Transfer of photochemistry from UV to visible: An expedient access to a bridged pyrrolidine

Lorthioir, O.; Corner, T.; Demanze, S.; Greenwood, R.; Proctor, K.; Stokes, S.; Turner, P.
Tetrahedron Lett. 2021. 84, 153447. DOI: 10.1016/j.tetlet.2021.153447

7.

Visible-Light Induced C(sp2)−H Amidation with an Aryl–Alkyl σ-Bond Relocation via Redox-Neutral Radical–Polar Crossover

Keum, H.; Jung, H.; Jeong, J.; Kim,D.; Chang S.
Angew. Chem. Int. Ed. 2021. 60 (48), 25235-25240. DOI: 10.1002/anie.202108775
  • Group: Chang at Korea Advanced Institute of Science and Technology (KAIST)
  • Catalyst: Iridium (photocatalyst)
  • Model: PR160L-456

8.

Depolymerization of Hydroxylated Polymers via Light-Driven C–C Bond Cleavage

Nguyen, S. T.; McLoughlin, E. A.; Cox, J. H.; Fors, B. P.; Knowles, R. R.
J. Am. Chem. Soc. 2021. 143 (31), 12268–12277. DOI: 10.1021/jacs.1c05330
  • Group: Knowles at Princeton University
  • Catalyst: Iridium, Acridinium (photocatalysts)
  • Model: H150 Blue

9.

PCET-Based Ligand Limits Charge Recombination with an Ir(III) Photoredox Catalyst

Sayre, H.; Ripberger, H. H.; Odella, E.; Zieleniewska, A.; Heredia, D. A.; Rumbles, G.; Scholes, G. D.; Moore, T. A.; Moore, A. L.; Knowles, R. R.
J. Am. Chem. Soc. 2021. 143 (33), 13034-13043. DOI: 10.1021/jacs.1c01701
  • Group: Knowles at Princeton University
  • Catalyst: Iridium (photocatalyst)
  • Model: PR160-440, PR160-456

11.

A Nanocrystal Catalyst Incorporating a Surface Bound Transition Metal to Induce Photocatalytic Sequential Electron Transfer Events

Martin, J. S.; Zeng, X.; Chen, X.; Miller, C.; Han, C.; Lin, Y.; Yamamoto, N.; Wang, X.;
J. Am. Chem. Soc. 2021. 143 (30), 11361-11369. DOI: 10.1021/jacs.1c00503
  • Group: Yan at San Diego State University
  • Catalyst: Copper exchanged lead-halide perovskite nanocrystal (Cu-CsPbBr3) (photocatalyst)
  • Model: PR160-456

12.

Bringing Earth-Abundant Plasmonic Catalysis to Light: Gram-Scale Mechanochemical Synthesis and Tuning of Activity by Dual Excitation of Antenna and Reactor Sites

Quiroz, J.; de Oliveira, P. F. M.; Shetty, S.; Oropeza, F. E.; de la Peña O’Shea, V. A.; Rodrigues, L. C. V.; Rodrigues, M. P. de S.; Torresi, R. M.; Emmerling, F.; Camargo, P. H. C.
ACS Sustain. Chem. Eng. 2021. 9 (29), 9750-9760. DOI: 10.1021/acssuschemeng.1c02063
  • Group: Camargo at University of Helsinki
  • Catalyst: Plasmonic Au/MoO3_P (photocatalyst)
  • Model: PR160L-525, PR160L-740-C

13.

Visible light enables catalytic formation of weak chemical bonds with molecular hydrogen

Park, Y.; Kim, S.; Tian, L.; Zhong, H.; Scholes, G. D.; Chirik, P. J.
Nat. Chem. 2021. 13, 969–976. DOI: 10.1038/s41557-021-00732-z
  • Group: Chirik at Princeton University
  • Catalyst: Iridium hydride (photocatalyst)
  • Model: H150 Blue

14.

Pyridylphosphonium Salts as Alternatives to Cyanopyridines in Radical-Radical Coupling Reactions

Greenwood, J. W.; Boyle, B. T.; McNally, A.
Chem. Sci. 2021. 12, 10538-10543. DOI: 10.1039/D1SC02324A
  • Group: McNally at Colorado State University
  • Catalyst: Iridium, 3DPAFIPN, [Mes-Acr]BF4 (photocatalyst)
  • Model: PR160-456

15.

Photoinduced copper-catalysed asymmetric amidation via ligand cooperativity

Chen, C.; Peters, J.C.; Fu, G.C.
Nature 2021. 596, 250–256. DOI: 10.1038/s41586-021-03730-w
  • Group: Fu at California Institute of Technology
  • Catalyst: Copper/bisphosphine/phenoxide complex (photocatalyst)
  • Model: PR160-440

16.

Asymmetric benzylic C(sp3)−H acylation via dual nickel and photoredox catalysis

Huan, L.; Shu, X.; Zu, W.; Zhong, D.; Huo, H.
Nat. Commun. 2021. 12 (3536). DOI: 10.1038/s41467-021-23887-2
  • Group: Huo at Xiamen University
  • Catalyst: Iridium (photocatalyst), Nickel
  • Model: PR160L-427

17.

Iron-Catalyzed Photoinduced LMCT: A 1° C–H Abstraction Enables Skeletal Rearrangements and C(sp3)–H Alkylation

Kang, Y. C.; Treacy, S. M.; Rovis, T.
ACS Catal. 2021. 11 (12), 7442-7449. DOI: 10.1021/acscatal.1c02285
  • Group: Rovis at Columbia University
  • Catalyst: Iron FeCl3 (photocatalyst)
  • Model: PR160-440

18.

Alkylation of the α-amino C–H bonds of anilines photocatalyzed by a DMEDA-Cu-benzophenone complex: reaction scope and mechanistic studies

Baptiste Abadie, Gediminas Jonusauskas, Nathan Mcclenaghan, Patrick Toullec, Jean-Marc Vincent
Org. Biomol. Chem. 2021. 19 (26), 5800-5805. DOI: 10.1039/D1OB00960E
  • Group: Toullec & Vincent at University of Bordeaux
  • Catalyst: DMEDA-Cu-benzophenone (photocatalyst)
  • Model: PR160L-370, PR160L-390

19.

Isotope Effects and the Mechanism of Photoredox-Promoted [2 + 2] Cycloadditions of Enones

Kuan, K.-Y.; Singleton, D. A.
J. Org. Chem. 2021. 86 (9), 6305–6313. DOI: 10.1021/acs.joc.1c00099
  • Group: Singleton at Texas A&M University
  • Catalyst: Ruthenium (photocatalyst)
  • Model: H150 B

20.

Construction of Complex Cyclobutane Building Blocks by Photosensitized [2 + 2] Cycloaddition of Vinyl Boronate Esters

Scholz, S. O.; Kidd, J. B.; Capaldo, L.; Flikweert, N. E.; Littlefield, R. M.; Yoon, T. P.
Org. Lett. 2021. 23 (9), 3496-3501. DOI: 10.1021/acs.orglett.1c00938
  • Group: Yoon at University of Wisconsin–Madison
  • Catalyst: Iridium (photocatalyst)
  • Model: H150-B, PR160-427

21.

Diaryl Ether Formation Merging Photoredox and Nickel Catalysis

Liu, L.; Nevado, C.
Organometallics 2021. 40 (14), 2188-2193. DOI: 10.1021/acs.organomet.1c00018
  • Group: Nevado at University of Zurich
  • Catalyst: Nickel, Iridium, 4CzIPN (photocatalysts)
  • Model: H150 Blue

22.

Visible Light-Induced Pd-Catalyzed Alkyl-Heck Reaction of Oximes

Kvasovs, N.; Iziumchenko, V.; Palchykov, V.; Gevorgyan, V.
ACS Catal. 2021. 11 (6), 3749-3754. DOI: 10.1021/acscatal.1c00267
  • Group: Gevorgyan at University of Texas at Dallas
  • Catalyst: Palladium (photocatalyst)
  • Model: H150 Blue

23.

Intermolecular Crossed [2 + 2] Cycloaddition Promoted by Visible-Light Triplet Photosensitization: Expedient Access to Polysubstituted 2-Oxaspiro[3.3]heptanes

Murray, P. R. D.; Bussink, W. M. M.; Davies, G. H. M.; van der Mei, F. W.; Antropow, A. H.; Edwards, J. T.; D’Agostino, L. A.; Ellis, J. M.; Hamann, L. G.; Romanov-Michailidis, F.; Knowles, R. R.
J. Am. Chem. Soc. 2021. 143 (10), 4055-4063. DOI: 10.1021/jacs.1c01173
  • Group: Knowles at Princeton University
  • Catalyst: Iridium (photocatalyst)
  • Model: PR160-440

24.

Diastereoselective and Stereodivergent Synthesis of 2-Cinnamylpyrrolines Enabled by Photoredox-Catalyzed Iminoalkenylation of Alkenes

Shen, X.; Huang, C.; Yuan, X.-A.; Yu, S.
Angew. Chem. Int. Ed. 2021. 60, 9672. DOI: 10.1002/anie.202016941
  • Group: Yuan at Qufu Normal University & Yu at Nanjing University
  • Catalyst: Iridium (photocatalyst)
  • Model: PR160-456

25.

Photoredox catalysis on unactivated substrates with strongly reducing iridium photosensitizers

Shon, J.-H.; Kim, D.; Rathnayake, M. D.; Sittel, S.; Weaver, J.; Teets, T. S.
Chem. Sci., 2021. 12, 4069-4078. DOI: 10.1039/D0SC06306A
  • Group: Teets at University of Houston
  • Catalyst: Iridium (photocatalyst)
  • Model: H150 Blue

26.

Photoredox Nickel-Catalyzed C–S Cross-Coupling: Mechanism, Kinetics, and Generalization

Qin, Y.; Sun, R.; Gianoulis, N. P.; Nocera, D. G.
J. Am. Chem. Soc. 2021. 143 (4), 2005–2015. DOI: 10.1021/jacs.0c11937.
  • Group: Nocera at Harvard University
  • Catalyst: Iridium (photocatalyst), Nickel
  • Model: A160WE Tuna Blue

27.

Minimization of Back-Electron Transfer Enables the Elusive sp3 C-H Functionalization of Secondary Anilines

Zhao, H.; Leonori, D.
ngew. Chem., Int. Ed. Engl. 2021. 60 (14), 7669-7674. DOI: 10.1002/anie.202100051
  • Group: Leonori at University of Manchester
  • Catalyst: Iridium (photocatalyst)
  • Model: PR160-440

28.

Visible-Light-Enhanced Cobalt-Catalyzed Hydrogenation: Switchable Catalysis Enabled by Divergence between Thermal and Photochemical Pathways

Mendelsohn, L. N.; MacNeil, C. S.; Tian, L.; Park, Y.; Scholes, G. D.; Chirik, P. J.
ACS Catal. 2021. 11 (3), 1351-1360. DOI: 10.1021/acscatal.0c05136
  • Group: Chirik at Princeton University
  • Catalyst: Cobalt (photocatalyst)
  • Model: H150 Blue

Featured
29.

Development of a Platform for Near-Infrared Photoredox Catalysis

Ravetz, B. D.; Tay, N. E. S.; Joe, C. L.; Sezen-Edmonds, M.; Schmidt, M. A.; Tan, Y.; Janey, J. M.; Eastgate, M. D.; Rovis. T.
ACS Cent. Sci. 2020. 6 (11), 2053-2059. DOI: 10.1021/acscentsci.0c00948
  • Group: Rovis at Columbia University
  • Catalyst: Osmium Os(II) (photocatalyst)
  • Model: PR160L-456, PR160L-660-C, PR160L-740-C

30.

Photoredox-Catalyzed Deaminative Alkylation via C–N Bond Activation of Primary Amines

Ashley, M. A.; Rovis, T.
J. Am. Chem. Soc. 2020. 142 (43), 18310-18316. DOI: 10.1021/jacs.0c08595
  • Group: Rovis at Columbia University
  • Catalyst: Iridium (photocatalyst)
  • Model: PR160-427

31.

Synthesis of azetidines via visible-light-mediated intermolecular [2+2] photocycloadditions

Becker, M.R.; Wearing, E.R.; Schindler, C.S.
Nat. Chem. 2020. 12, 898–905. DOI: 10.1038/s41557-020-0541-1
  • Group: Schindler at University of Michigan
  • Catalyst: Iridium (photocatalyst)
  • Model: PR160-427

32.

Visible-Light-Enabled Paternò–Büchi Reaction via Triplet Energy Transfer for the Synthesis of Oxetanes

Rykaczewski, K. A.; Schindler, C. S.
Org. Lett. 2020. 22 (16), 6516-6519. DOI: 10.1021/acs.orglett.0c02316
  • Group: Schindler at University of Michigan
  • Catalyst: Iridium (photocatalyst)
  • Model: PR160-456

33.

Mechanistic Analysis of Metallaphotoredox C–N Coupling: Photocatalysis Initiates and Perpetuates Ni(I)/Ni(III) Coupling Activity

Till, N. A.; Tian, L.; Dong, Z.; Scholes, G. D.; MacMillan, D. W. C.
J. Am. Chem. Soc. 2020. 142 (37), 15830-15841. DOI: 10.1021/jacs.0c05901
  • Group: MacMillan at Princeton University
  • Catalyst:Copper, Iridium (photocatalyst)
  • Model: A160WE Tuna Blue

Featured
34.

Aminoalkyl radicals as halogen-atom transfer agents for activation of alkyl and aryl halides

Constantin, T.; Zanini, M.; Regni, A.; Sheikh, N. S.; Juliá, F.; Leonori, D.
Science 2020. 467 (6481), 1021-1026. DOI: 10.1126/science.aba2419
  • Group: Leonori at University of Manchester
  • Catalyst: Iridium, 4CzIPN (photocatalysts)
  • Model: PR160-440, PR160-370

35.

Photoredox Iridium–Nickel Dual-Catalyzed Decarboxylative Arylation Cross-Coupling: From Batch to Continuous Flow via Self-Optimizing Segmented Flow Reactor

Hsieh, H.-W.; Coley, C. W.; Baumgartner, L. M.; Jensen, K. F.; obinson, R. I.
Org. Process Res. Dev. 2018. 22 (4), 542-550. DOI: 10.1021/acs.oprd.8b00018

Organic Catalyst

Featured
1.

The merger of decatungstate and copper catalysis to enable aliphatic C(sp3)–H trifluoromethylation

Sarver, P.J.; Bacauanu, V.; Schultz, D.M.; DiRocco, D.A.; Lam, Y.H.; Sherer, E.C.; MacMillan, D.W.C.
Nat. Chem. 2020. 12, 459–467. DOI: 10.1038/s41557-020-0436-1
  • Group: MacMillan at Princeton University
  • Catalyst:Copper, Decatungstate (photocatalyst), Copper
  • Model: PR160-390

Supplementary Figure 3. Example of reaction setup (0.5 mmol scale).
Supplementary Figure 5. UV light-shielding amber acrylic box used during reactions.
Nat. Chem. 2020. 12, 459–467. DOI: 10.1038/s41557-020-0436-1

Featured
2.

Aminoalkyl radicals as halogen-atom transfer agents for activation of alkyl and aryl halides

Constantin, T.; Zanini, M.; Regni, A.; Sheikh, N. S.; Juliá, F.; Leonori, D.
Science 2020. 367 (6481), 1021-1026. DOI: 10.1126/science.aba2419
  • Group: Leonori at University of Manchester
  • Catalyst: 4CzIPN ,Iridium (photocatalysts)
  • Model: PR160-440, PR160-370

Figure S1.
Science 2020. 367 (6481), 1021-1026. DOI: 10.1126/science.aba2419

Featured
3.

Metal-free photoinduced C(sp3)-H borylation of alkanes

Shu, C.; Noble, A.; Aggarwal, V. K.
Nature 2020. 586 (7831), 714-719. DOI: 10.1038/s41586-020-2831-6
  • Group: Aggarwal at University of Bristol
  • Catalyst: ClB (photocatalyst)
  • Model: PR160L-390

Fig. S1. Photochemical set-up
Fig. S4. Scale-up reaction set-up
Nature 2020. 586 (7831), 714-719. DOI: 10.1038/s41586-020-2831-6

Featured
4.

Organocatalytic Approach to Photochemical Lignin Fragmentation

Yang, C.; Kärkäs, M. D.; Magallanes, G.; Chan, K.; Stephenson, C. R. J.
Org. Lett. 2020. 22 (20), 8082-8085. DOI: 10.1021/acs.orglett.0c03029
  • Group: Stephenson at University of Michigan
  • Catalyst: PhPTH (photocatalyst)
  • Model: PR160L-390

Figure S2. Reaction setup of condition A (left) and condition B (right)
Org. Lett. 2020. 22 (20), 8082-8085. DOI: 10.1021/acs.orglett.0c03029

Featured
5.

Polysulfide Anions as Visible Light Photoredox Catalysts for Aryl Cross-Couplings

Li, H.; Tang, X.; Pang, J. H.; Wu, X.; Yeow, E. K. L.; Wu, J.; Chiba, S.
J. Am. Chem. Soc. 2021. 143 (1), 481-487. DOI: 10.1021/jacs.0c11968
  • Group: Chiba at Nanyang Technological University
  • Catalyst: Tetrasulfide dianions (S42–) (photocatalyst)
  • Model: PR160-640-C, PR160-525, PR160-456, PR160-440, PR160-427, PR160-390

Figure S2. Reaction set-up in batch. A. The batch reaction setup. B. The batch reaction set up with light irradiation.
J. Am. Chem. Soc. 2021. 143 (1), 481-487. DOI: 10.1021/jacs.0c11968

6.

Late-Stage N-Me Selective Arylation of Trialkylamines Enabled by Ni/Photoredox Dual Catalysis

Shen, Y.; Rovis, T.
J. Am. Chem. Soc. 2021. 143 (40), 16364-16369. DOI: 10.1021/jacs.1c08157
  • Group: Rovis at Columbia University
  • Catalyst: 4CzIPN (photocatalyst), Nickel
  • Model: PR160-440

7.

Ni/Photoredox-Catalyzed Enantioselective Cross-Electrophile Coupling of Styrene Oxides with Aryl Iodides

Lau, S. H.; Borden, M. A.; Steiman, T. J.; Wang, L. S.; Parasram, M.; Doyle, A. G.
J. Am. Chem. Soc. 2021. 143 (38), 15873-15881. DOI: 10.1021/jacs.1c08105
  • Group: Doyle at University of California, Los Angeles (UCLA) (previously Princeton University)
  • Catalyst: 4CzIPN (photocatalyst), Nickel
  • Model: PR160-427

8.

Photoredox α-Arylation of Carbonyl Compounds

Hossain, M. M.; Shaikh, A.; Moutet, J.; Gianetti, T.
ChemRxiv 2021. Doi:10.33774/chemrxiv-2021-gsq6s-v2
This content is an early or alternative research output and has not been peer-reviewed at the time of posting.
  • Group: Gianetti at University of Arizona
  • Catalyst: Acridinium (photocatalyst)
  • Model: PR160L-518-C, PR160L-467

9.

Depolymerization of Hydroxylated Polymers via Light-Driven C–C Bond Cleavage

Nguyen, S. T.; McLoughlin, E. A.; Cox, J. H.; Fors, B. P.; Knowles, R. R.
J. Am. Chem. Soc. 2021. 143, 31, 12268–12277. DOI: 10.1021/jacs.1c05330
  • Group: Knowles at Princeton University
  • Catalyst: Iridium, Acridinium (photocatalysts)
  • Model: H150 Blue

10.

Synthesis of CF3-Containing Spirocyclic Indolines via a Red-Light-Mediated Trifluoromethylation/Dearomatization Cascade

Mei, L.; Moutet, J.; Stull, S. M.; Gianetti, T.L.
J. Org. Chem. 2021. 86 (15), 10640-10653. DOI: 10.1021/acs.joc.1c01313
  • Group: Gianetti at University of Arizona
  • Catalyst: Pr-DMQA (photocatalyst)
  • Model: PR160-640-C

11.

From Photoredox Catalysis to the Direct Excitation of EthynylBenziodoXolones: Accessing Alkynylated Quaternary Carbons from Alcohols via Oxalates

Amos, S. G. E.; Cavalli, D.; Le Vaillant, F.; Waser, J.
ChemRxiv 2021.. DOI: 10.33774/chemrxiv-2021-56f12
This content is a preprint and has not been peer-reviewed.
  • Group: Waser at Ecole polytechnique fédérale de Lausanne (EPFL)
  • Catalyst: 4CzIPN (photocatalyst)
  • Model: PR160L-440

12.

Pyridylphosphonium Salts as Alternatives to Cyanopyridines in Radical-Radical Coupling Reactions

Greenwood, J. W.; Boyle, B. T.; McNally, A.
Chem. Sci. 2021. 12, 10538-10543. DOI: 10.1039/D1SC02324A
  • Group: McNally at Colorado State University
  • Catalyst: 3DPAFIPN, [Mes-Acr]BF4, Iridium (photocatalysts)
  • Model: PR160-456

13.

Site-selective tyrosine bioconjugation via photoredox catalysis for native-to-bioorthogonal protein transformation

Li, B. X.; Kim, D. K.; Bloom, S.; Huang, R. Y.-C.; Qiao, J. X.; Ewing, W. R.; Oblinsky, D. G.; Scholes, G. D.; MacMillan, D. W. C.
Nat. Chem. 2021. 13, 902–908. DOI: 10.1038/s41557-021-00733-y
  • Group: MacMillan at Princeton University
  • Catalyst: Lumiflavin (photocatalyst)
  • Model: PR160-440

14.

Photocatalytic carbocarboxylation of styrenes with CO2 for the synthesis of γ-aminobutyric esters

Hahm, H.; Kim, J.; Ryoo, J. Y.; Han, M. S.; Hong, S.
Org. Biomol. Chem. 2021. 19, 6301-6312. DOI: 10.1039/D1OB00866H
  • Group: Hong at Gwangju Institute of Science and Technology
  • Catalyst: 4CzBnBN (photocatalyst)
  • Model: A80 Tuna Blue

15.

Visible-Light Driven Organo-photocatalyzed Multicomponent Reaction for C(sp3)−H Alkylation of Phosphoramides with in situ Generated Michael Acceptors

Ghosh, K. G.; Das, D.; Chandu, P.; Sureshkumar, D.
Eur. J. Org. Chem. 2021. 2021, 4293-4298. DOI: 10.1002/ejoc.202100561
  • Group: Sureshkumar at Indian Institute of Science Education and Research Kolkata
  • Catalyst: Acr-mes+ClO4- (photocatalyst)
  • Model: PR160L-456

16.

A radical approach for the selective C–H borylation of azines

Kim, J. H.; Constantin, T.; Simonetti, M.; Llaveria, J.; Sheikh, N. S.; Leonori, D.
Nature 2021. 595, 677–683. DOI: 10.1038/s41586-021-03637-6
  • Group: Leonori at University of Manchester
  • Catalyst: 4CzIPN (photocatalysts)
  • Model: PR160-440

17.

Organic thermally activated delayed fluorescence (TADF) compounds used in photocatalysis

Brydena, M. A.; Zysman-Colman, E.
Chem. Soc. Rev. 2021. 50, 7587-7680. DOI: 10.1039/D1CS00198A.
  • Group: Zysman-Colman at University of St Andrews
  • Catalyst: 4DPAIPN (photocatalysts)
  • Model: PR160-456

18.

Accessing Aliphatic Amines in C–C Cross-Couplings by Visible Light/Nickel Dual Catalysis

Dong, W.; Badir, S. O.; Zhang, X.; Molander, G. A.
Org. Lett. 2021. 23 (11), 4250–4255. DOI: 10.1021/acs.orglett.1c01207.
  • Group: Molander at University of Pennsylvania
  • Catalyst: 4CzIPN (photocatalysts), Nickel
  • Model: H150 Blue

19.

Photoredox Propargylation of Aldehydes Catalytic in Titanium

Calogero, F.; Gualandi, A.; Di Matteo, M.; Potenti S.; Fermi, A.; Bergamini, G.; Cozzi, P. G.
J. Org. Chem. 2021. 86 (9), 7002–7009. DOI: 10.1021/acs.joc.1c00521
  • Group: Cozzi at Università di Bologna
  • Catalyst: 3DPAFIPN (photocatalysts), Titanium
  • Model: PR160L-456

20.

Diaryl Ether Formation Merging Photoredox and Nickel Catalysis

Liu, L.; Nevado, C.
Organometallics 2021. 40 (14), 2188-2193. DOI: 10.1021/acs.organomet.1c00018
  • Group: Nevado at University of Zurich
  • Catalyst: 4CzIPN, Iridium (photocatalysts), Nickel
  • Model: H150 Blue

21.

Chromoselective Photocatalysis Enables Stereocomplementary Biocatalytic Pathways

Schmermund, L.; Reischauer, S.; Bierbaumer, S.; Winkler, C. K.;Diaz-Rodriguez, A.; Edwards, L. J.;Kara, S.; Mielke, T.; Cartwright, J.; Grogan, G.; Pieber, B.; Kroutil, W.
Angew. Chem. Int. Ed. 2021. 60, 6965. DOI: 10.1002/anie.202100164
  • Group: Pieber at Max Planck Institute of Colloids and Interfaces & Kroutil at University of Graz
  • Catalyst: CN-OA-m (photocatalysts)
  • Model: PR160-440, PR160-525

22.

Visible-Light-Driven Organophotocatalyzed Mono-, Di-, and Tri-C(sp3)–H Alkylation of Phosphoramides

Ghosh, K. G.; Das, D.; Chandu, P.; Sureshkumar, D.
J. Org. Chem. 2021. 86 (3), 2644-2657. DOI: 10.1021/acs.joc.0c02695
  • Group: Sureshkumar at Indian Institute of Science Education and Research Kolkata
  • Catalyst: Eosin-Y, Acridinium Acr-mes+ClO4- (photocatalysts)
  • Model: PR160L-456

Featured
23.

Visible-Light-Mediated Oxidative Debenzylation Enables the Use of Benzyl Ethers as Temporary Protecting Groups

Cavedon, C.; Sletten, E. T.; Madani, A.; Niemeyer, O.; Seeberger, P. H.; Pieber, B.
Org. Lett. 2021. 23 (2), 514-518. DOI: 10.1021/acs.orglett.0c04026
  • Group: Pieber at Max Planck Institute of Colloids and Interfaces
  • Catalyst: DDQ, TBN (photocatalysts)
  • Model: PR160L-440, PR160L-525

24.

Photoenzymatic Reductions Enabled by Direct Excitation of Flavin-Dependent “Ene”-Reductases

Sandoval, B. A.; Clayman, P. D.; Oblinsky, D. G.; Oh, S.; Nakano, Y.; Bird, M.; Scholes, G. D.; Hyster, T. K.
J. Am. Chem. Soc. 2021. 143 (4), 1735-1739. DOI: 10.1021/jacs.0c11494
  • Group: Hyster at Princeton University
  • Catalyst: Flavin-Dependent “Ene”-Reductases (photocatalyst)
  • Model: PR160L-390

25.

Site-Selective Functionalization of Methionine Residues via Photoredox Catalysis

Kim, J.; Li, B. X.; Huang, R. Y.-C.; Qiao, J. X.; Ewing, W. R.; MacMillan, D. W. C.
J. Am. Chem. Soc. 2020. 142 (51), 21260-21266. DOI: 10.1021/jacs.0c09926
  • Group: MacMillan at Princeton University
  • Catalyst: Lumiflavin (photocatalyst)
  • Model: PR160-440

26.

Nucleophilic Aromatic Substitution of Unactivated Fluoroarenes Enabled by Organic Photoredox Catalysis

Pistritto, V. A.; Schutzbach-Horton, M. E.; Nicewicz, D. A.
J. Am. Chem. Soc. 2020. 142 (40), 17187-17194. DOI: 10.1021/jacs.0c09296
  • Group: Nicewicz at University of North Carolina at Chapel Hill
  • Catalyst: Xanthylium tetrafluoroborate (photocatalyst)
  • Model: PR160-427, PR160-456

27.

Organocatalyzed Photoredox Radical Ring-Opening Polymerization of Functionalized Vinylcyclopropanes

Chen, D.-F.; Bernsten, S.; Miyake, G. M.
Macromolecules 2020. 53 (19), 8352-8359. DOI: 10.1021/acs.macromol.0c01367
  • Group: Miyake at Colorado State University
  • Catalyst: N,N-diaryl dihydrophenazines, 3,7-di(4-biphenyl)-Nnaphthylphenoxazine and EtVCP-C2 (photocatalysts)
  • Model: H150 Blue

28.

Overcoming limitations in dual photoredox/nickel-catalysed C–N cross-couplings due to catalyst deactivation

Gisbertz, S.; Reischauer, S.; Pieber, B.
Nat. Catal. 2020. 3, 611–620. DOI: 10.1038/s41929-020-0473-6
  • Group: Pieber at Max Planck Institute of Colloids and Interfaces
  • Catalyst: Carbon nitride CN-OA-m (photocatalyst), Nickel
  • Model: PR160-370

29.

Helical Carbenium Ion: A Versatile Organic Photoredox Catalyst for Red-Light-Mediated Reactions

Mei, L.; Veleta, J. M.; Gianetti T. L.
J. Am. Chem. Soc. 2020. 142 (28), 12056-12061. DOI: 10.1021/jacs.0c05507
  • Group: Gianetti at University of Arizona
  • Catalyst: Pr-DMQA (photocatalyst)
  • Model: PR160L-640-C

30.

Discovery and characterization of an acridine radical photoreductant.

MacKenzie, I. A.; Wang, L.; Onuska, N. P. R.; Williams, O. F.; Begam, K.; Moran, A. M.; Dunietz, B. D.; Nicewicz, D. A.
Nature 2020. 580, 76–80. DOI: 10.1038/s41586-020-2131-1
  • Group: Nicewicz at University of North Carolina at Chapel Hill
  • Catalyst: di-tBu-Mes-Acr+BF4, Mes-Acr-BF4 (photocatalyst)
  • Model: PR160-390, PR160-467

Featured
31.

The merger of decatungstate and copper catalysis to enable aliphatic C(sp3)–H trifluoromethylation

Sarver, P.J.; Bacauanu, V.; Schultz, D.M.; DiRocco, D.A.; Lam, Y.H.; Sherer, E.C.; MacMillan, D.W.C.
Nat. Chem. 2020. 12, 459–467. DOI: 10.1038/s41557-020-0436-1
  • Group: MacMillan at Princeton University
  • Catalyst: Decatungstate (photocatalyst), Copper
  • Model: PR160-390

32.

Bromine Radical Catalysis by Energy Transfer Photosensitization

Chen, D.-F.; Chrisman, C. H.; Miyake, G. M.
ACS Catal. 2020. 10 (4), 2609-2614. DOI: 10.1021/acscatal.0c00281
  • Group: Miyake at Colorado State University
  • Catalyst: 4CzIPN, Cinnamyl bromide (photocatalyst)
  • Model: H150 Blue

Direct Photoexcitation

Featured
1.

Photochemically derived 1-aminonorbornanes provide structurally unique succinate dehydrogenase inhibitors with in vitro and in planta activity

Staveness, D.; Breunig, M.; Ortiz, V.; Sang, H.; Collins, J. L.; McAtee, R. C.; Chilvers, M. I.; Stephenson, C. R. J.
Cell Rep. Phys. Sci. 2021. 2, 100548. DOI: 10.1016/j.xcrp.2021.100548.
  • Group: Stephenson at University of Michigan
  • Model: PR160-390

Figure S4. Batch Processing Equipment. Left: Full apparatus in use; Right: Zoom in on lamp orientation while in use (Kessil PR160-390nm pictured).
Cell Rep. Phys. Sci. 2021. 2, 100548. DOI: 10.1016/j.xcrp.2021.100548.

2.

Development and Scale-Up of a Novel Photochemical C–N Oxidative Coupling

Robinson, A.; Dieckmann, M.; Krieger, J.-P.; Vent-Schmidt, T.; Marantelli, D.; Kohlbrenner, R.; Gribkov, D.; Simon, L. L.; Austrup, D.; Rod, A.; Bochet, C. G.
Org. Process Res. Dev. 2021. 25 (10), 2205-2220. DOI: 10.1021/acs.oprd.1c00244

3.

Direct Photoexcitation of Ethynylbenziodoxolones: An Alternative to Photocatalysis for Alkynylation Reactions

Amos, S.G.E.; Cavalli, D.; Le Vaillant, F.; Waser, J.
Angew. Chem. Int. Ed. 2021. 60, 23827. DOI: 10.1002/anie.202110257
  • Group: Waser at Ecole polytechnique fédérale de Lausanne (EPFL)
  • Model: PR160L-440

4.

Photoredox-Mediated Hydroalkylation and Hydroarylation of Functionalized Olefins for DNA-Encoded Library Synthesis

Badir, S.O.; Lipp, A.; Krumb, M.; Cabrera-Afonso, M.J.; Kammer, L.; Wu, V.; Huang, M.; Marcaurelle, L.; Molander, G. A.
Chem. Sci., 2021. 12, 12036-12045. DOI: 10.1039/D1SC03191K
  • Group: Molander at University of Pennsylvania
  • Model: PR160-456

5.

Photocatalyst-free, visible-light-mediated nickel catalyzed carbon–heteroatom cross-couplings

Cavedon, C.; Gisbertz, S.; Vogl, S.; Richter, N.; Schrottke, S.; Teutloff, C.; Seeberger, P. H.; Thomas, A.; Pieber, B.
ChemRxiv 2021. DOI: 10.33774/chemrxiv-2021-kt2wr
This content is an early or alternative research output and has not been peer-reviewed at the time of posting.
  • Group: Pieber at Max Planck Institute of Colloids and Interfaces
  • Model: PR160L-440, PR160L-525

6.

From Photoredox Catalysis to the Direct Excitation of EthynylBenziodoXolones: Accessing Alkynylated Quaternary Carbons from Alcohols via Oxalates

Amos, S. G. E.; Cavalli, D.; Le Vaillant, F.; Waser, J.
ChemRxiv 2021. DOI: 10.33774/chemrxiv-2021-56f12
This content is a preprint and has not been peer-reviewed.
  • Group: Waser at Ecole polytechnique fédérale de Lausanne (EPFL)
  • Model: PR160L-440

7.

Biocompatible Photoinduced Alkylation of Dehydroalanine for the Synthesis of Unnatural α-Amino Acids

Delgado, J. A. C.; Correia, J. T. M.; Pissinati, E. F.; Paixão, M. W.
Org. Lett. 2021. 23 (13), 5251–5255. DOI: 10.1021/acs.orglett.1c01781
  • Group: Paixão at Federal University of São Carlos—UFSCar
  • Model: H150 Blue

8.

Nickel-Catalyzed Decarboxylative Cross-Coupling of Bicyclo[1.1.1]pentyl Radicals Enabled by Electron Donor–Acceptor Complex Photoactivation

Polites, V. C.; Badir, S. O.; Keess, S.; Jolit, A.; Molander, G. A.
Org. Lett. 2021. 23 (12), 4828-4833. DOI: 10.1021/acs.orglett.1c01558
  • Group: Molander at University of Pennsylvania
  • Model: PR160L-390

9.

Catalyst-Free Decarbonylative Trifluoromethylthiolation Enabled by Electron Donor-Acceptor Complex Photoactivation

Lipp, A.; Badir, S. O.; Dykstra, R.; Gutierrez, O.; Molander, G. A.
Adv. Synth. Catal. 2021. 363, 3507. DOI: 10.1002/adsc.202100469
  • Group: Molander at University of Pennsylvania
  • Model: PR160L-390, A160WE Tuna Blue

10.

Photo-Induced Arylation of Carbazoles With Aryldiazonium Salts

Maeda, B.; Mori, G.; Sakakibara, Y.; Yagi, A.; Murakami, K.; Itami, K.
Asian J. Org. Chem. 2021. 10, 1428. DOI: 10.1002/ajoc.202100191

11.

Photo-mediated selective deconstructive geminal dihalogenation of trisubstituted alkenes

Wang, H.; Toh, R. W.; Shi, X.; Wang, T.; Cong, X.; Wu, J.
Nat. Commun. 2020. 11, 4462. DOI: 10.1038/s41467-020-18274-2
  • Group: Wu at National University of Singapore
  • Model: PR160-456

12.

Generation of Alkyl Radical through Direct Excitation of Boracene-Based Alkylborate

Sato, Y.; Nakamura, K.; Sumida, Y.; Hashizume, D.; Hosoya, T.; Ohmiya, H.
J. Am. Chem. Soc. 2020. 142 (22), 9938-9943. DOI: 10.1021/jacs.0c04456
  • Group: Ohmiya at Kanazawa University
  • Model: PR160L-440

13.

Direct Decarboxylative Functionalization of Carboxylic Acids via O–H Hydrogen Atom Transfer

Na, C. G.; Ravelli, D.; Alexanian, E. J.
J. Am. Chem. Soc. 2020. 142 (1), 44-49. DOI: 10.1021/jacs.9b10825
  • Group: Alexanian at University of North Carolina at Chapel Hill
  • Model: PR160-440

Featured
14.

Exploiting Imine Photochemistry for Masked N-Centered Radical Reactivity

Staveness, D.; Collins, J. L.; McAtee, R. C.; Stephenson, C. R. J.
Angew. Chem. Int. Ed. 2019. 58, 19000. DOI: 10.1002/anie.201909492
  • Group: Stephenson at University of Michigan
  • Model: PR160-390

Featured
15.

Regiodivergent Photocyclization of Dearomatized Acylphloroglucinols: Asymmetric Syntheses of (−)-Nemorosone and (−)-6-epi-Garcimultiflorone A

Wen, S.; Boyce, J. H.; Kandappa, S. K.; Sivaguru, J.; Porco, J. A.
J. Am. Chem. Soc. 2019. 141 (28), 11315-11321. DOI: 10.1021/jacs.9b05600
  • Group: Porco at Boston University
  • Model: PR160-390

Beyond Blue

Featured
1.

Development of a Platform for Near-Infrared Photoredox Catalysis

Ravetz, B. D.; Tay, N. E. S.; Joe, C. L.; Sezen-Edmonds, M.; Schmidt, M. A.; Tan, Y.; Janey, J. M.; Eastgate, M. D.; Rovis. T.
ACS Cent. Sci. 2020. 6 (11), 2053-2059. DOI: 10.1021/acscentsci.0c00948
  • Group: Rovis at Columbia University
  • Catalyst: Os(II) photosensitizers
  • Model: PR160L-456, PR160L-660-C, PR160L-740-C

ACS Cent. Sci. 2020. 6 (11), 2053-2059. DOI: 10.1021/acscentsci.0c00948

2.

Implantable optical fibers for immunotherapeutics delivery and tumor impedance measurement

Chin, A. L.; Jiang, S.; Jang, E.; Niu, L.; Li, L.; Jia, X.; Tong, R.
Nat. Commun. 2021. 12, 5138. DOI: 10.1038/s41467-021-25391-z
  • Group: Tong at Virginia Polytechnic Institute and State University
  • Model: H150 Red (600-700nm)

3.

Photoredox α-Arylation of Carbonyl Compounds

Hossain, M. M.; Shaikh, A.; Moutet, J.; Gianetti, T.
ChemRxiv 2021. Doi:10.33774/chemrxiv-2021-gsq6s-v2
This content is an early or alternative research output and has not been peer-reviewed at the time of posting.
  • Group: Gianetti at University of Arizona
  • Catalyst: Acridinium (photocatalyst)
  • Model: PR160L-518-C, PR160L-467

4.

Direct 3-Acylation of Indolizines by Carboxylic Acids for the Practical Synthesis of Red Light-Releasable Caged Carboxylic Acids

Watanabe, K.; Terao, N.; Niwa, T.; Hosoya, T.
J. Org. Chem. 2021. 86 (17), 11822-11834. DOI: 10.1021/acs.joc.1c01244
  • Group: Hosoya at RIKEN
  • Catalyst: Methylene blue (photocatalyst)
  • Model: PR160L-440

5.

Bringing Earth-Abundant Plasmonic Catalysis to Light: Gram-Scale Mechanochemical Synthesis and Tuning of Activity by Dual Excitation of Antenna and Reactor Sites

Quiroz, J.; de Oliveira, P. F. M.; Shetty, S.; Oropeza, F. E.; de la Peña O’Shea, V. A.; Rodrigues, L. C. V.; Rodrigues, M. P. de S.; Torresi, R. M.; Emmerling, F.; Camargo, P. H. C.
ACS Sustain. Chem. Eng. 2021. 9 (29), 9750-9760. DOI: 10.1021/acssuschemeng.1c02063
  • Group: Camargo at University of Helsinki
  • Catalyst: Plasmonic Au/MoO3_P (photocatalyst)
  • Model: PR160L-525, PR160L-740-C

6.

Photocatalyst-free, visible-light-mediated nickel catalyzed carbon–heteroatom cross-couplings

Cavedon, C.; Gisbertz, S.; Vogl, S.; Richter, N.; Schrottke, S.; Teutloff, C.; Seeberger, P. H.; Thomas, A.; Pieber, B.
ChemRxiv 2021. DOI: 10.33774/chemrxiv-2021-kt2wr
This content is an early or alternative research output and has not been peer-reviewed at the time of posting.
  • Group: Pieber at Max Planck Institute of Colloids and Interfaces
  • Catalyst: Nickel
  • Model: PR160L-440, PR160L-525

7.

Synthesis of CF3-Containing Spirocyclic Indolines via a Red-Light-Mediated Trifluoromethylation/Dearomatization Cascade

Mei, L.; Moutet, J.; Stull, S. M.; Gianetti, T.L.
J. Org. Chem. 2021. 86 (15), 10640-10653. DOI: 10.1021/acs.joc.1c01313
  • Group: Gianetti at University of Arizona
  • Catalyst: Pr-DMQA (photocatalyst)
  • Model: PR160-640-C

Featured
8.

Visible-Light-Mediated Oxidative Debenzylation Enables the Use of Benzyl Ethers as Temporary Protecting Groups

Cavedon, C.; Sletten, E. T.; Madani, A.; Niemeyer, O.; Seeberger, P. H.; Pieber, B.
Org. Lett. 2021. 23 (2), 514-518. DOI: 10.1021/acs.orglett.0c04026
  • Group: Pieber at Max Planck Institute of Colloids and Interfaces
  • Catalyst: DDQ, TBN (photocatalysts)
  • Model: PR160L-440, PR160L-525

Featured
9.

Polysulfide Anions as Visible Light Photoredox Catalysts for Aryl Cross-Couplings

Li, H.; Tang, X.; Pang, J. H.; Wu, X.; Yeow, E. K. L.; Wu, J.; Chiba, S.
J. Am. Chem. Soc. 2021. 143 (1), 481-487. DOI: 10.1021/jacs.0c11968
  • Group: Chiba at Nanyang Technological University
  • Catalyst: Tetrasulfide dianions (S42–) (photocatalyst)
  • Model: PR160-640-C, PR160-525, PR160-456, PR160-440, PR160-427, PR160-390

10.

Modular, Self-Assembling Metallaphotocatalyst for Cross-Couplings Using the Full Visible-Light Spectrum

Reischauer, S.; Strauss, V.; Pieber, B.
ACS Catal. 2020. 10 (22), 13269-13274. DOI: 10.1021/acscatal.0c03950
  • Group: Pieber at Max Planck Institute of Colloids and Interfaces
  • Catalyst: Nickel, TiO2, Fluorescein sodium, Coumarin 343, Ruthenium (photocatalysts)
  • Model: PR160-440, PR160-525, H160 Tuna Flora (Red 666 nm)

11.

Helical Carbenium Ion: A Versatile Organic Photoredox Catalyst for Red-Light-Mediated Reactions

Mei, L.; Veleta, J. M.; Gianetti T. L.
J. Am. Chem. Soc. 2020. 142 (28), 12056-12061. DOI: 10.1021/jacs.0c05507
  • Group: Gianetti at University of Arizona
  • Catalyst: Pr-DMQA (photocatalyst)
  • Model: PR160L-640-C

Photoreactor Design

Featured
1.

Polysulfide Anions as Visible Light Photoredox Catalysts for Aryl Cross-Couplings

Li, H.; Tang, X.; Pang, J. H.; Wu, X.; Yeow, E. K. L.; Wu, J.; Chiba, S.
J. Am. Chem. Soc. 2021. 143 (1), 481-487. DOI: 10.1021/jacs.0c11968
  • Group: Chiba at Nanyang Technological University
  • Catalyst: Tetrasulfide dianions (S42–) (photocatalyst)
  • Model: PR160-640-C, PR160-525, PR160-456, PR160-440, PR160-427, PR160-390

Figure S8 The flow apparatus. A. The whole set-up. B. The whole set-up with light irradiation. C. The tubing on a glass cylinder.
J. Am. Chem. Soc. 2021. 143 (1), 481-487. DOI: 10.1021/jacs.0c11968

2.

3D Printed Reactors and Kessil Lamp Holders for Flow Photochemistry: Design and System Standardization

Penny, M.; Hilton, S.
ChemRxiv 2021. DOI: 10.33774/chemrxiv-2021-kmxgd
This content is a preprint and has not been peer-reviewed.
  • Group: Hilton at University College London
  • Model: A160WE Tuna Blue

Supplementary Figure 1 Image showing the photoflow set-up with the protective cover removed for visualisation of location of the Kessil lamp (left) and the realised system (right).
ChemRxiv 2021. DOI: 10.33774/chemrxiv-2021-kmxgd
This content is a preprint and has not been peer-reviewed.

3.

Rapid Optimization of Photoredox Reactions for Continuous-Flow Systems Using Microscale Batch Technology

González-Esguevillas, M.; Fernández, D. F.; Rincón, J. A.; Barberis, M.; de Frutos, O.; Carlos Mateos, C.; García-Cerrada, S.; Agejas, J.; MacMillan, D. W. C.
ACS Cent. Sci. 2021. 7 (7), 1126-1134. DOI: 10.1021/acscentsci.1c00303
  • Group: MacMillan at Princeton University
  • Catalyst: Iridium, 4CzIPN (photocatalysts)
  • Model: PR160-390, PR160-427, PR160-440, PR160-456, PR160-467

*Modified from Fig. S1. Part 3. g) placing the stand inside of the box, h) plate inside of the box, i) top mirror with a fan on the center, j) box closed, k and l) FLOSIM device on.
ACS Cent. Sci. 2021. 7 (7), 1126-1134. DOI: 10.1021/acscentsci.1c00303

Featured
4.

Photocatalytic C-H activation and the subtle role of chlorine radical complexation in reactivity

Yang Q.; Wang Y. H.; Qiao Y.; Gau M.; Carroll P. J.; Walsh P. J.; Schelter E. J.
Science 2021. 372 (6544), 847-852. DOI: 10.1126/science.abd8408
  • Group: Schelter at University of Pennsylvania
  • Catalyst: Cerium (photocatalyst)
  • Model: PR160-467, PR160-390

Figure S3. (A)Pictures of the high-pressure photoreactor from front. (B) Disassembling of the photoreactor. (C) Reaction performed using a high-pressure photo-reactor.
Science 2021. 372 (6544), 847-852. DOI: 10.1126/science.abd8408

5.

Visible-Light-Mediated Oxidative Debenzylation Enables the Use of Benzyl Ethers as Temporary Protecting Groups

Cavedon, C.; Sletten, E. T.; Madani, A.; Niemeyer, O.; Seeberger, P. H.; Pieber, B.
Org. Lett. 2021. 23 (2), 514-518. DOI: 10.1021/acs.orglett.0c04026
  • Group: Pieber at Max Planck Institute of Colloids and Interfaces
  • Catalyst: DDQ, TBN (photocatalysts)
  • Model: PR160L-440, PR160L-525

Figure S4. Experimental setup for flow experiments.
Figure S5. Experimental setup for extended retention time flow experiment.
Org. Lett. 2021. 23 (2), 514-518. DOI: 10.1021/acs.orglett.0c04026

Featured
6.

Organocatalytic Approach to Photochemical Lignin Fragmentation

Yang, C.; Kärkäs, M. D.; Magallanes, G.; Chan, K.; Stephenson, C. R. J.
Org. Lett. 2020. 22 (20), 8082-8085. DOI: 10.1021/acs.orglett.0c03029
  • Group: Stephenson at University of Michigan
  • Catalyst: PhPTH (photocatalyst)
  • Model: PR160L-390

Figure S3. Flow reaction setup when light off (left) and light on (right)
Org. Lett. 2020. 22 (20), 8082-8085. DOI: 10.1021/acs.orglett.0c03029

Featured
7.

Nucleophilic (Radio)Fluorination of Redox-Active Esters via Radical-Polar Crossover Enabled by Photoredox Catalysis

Webb, E. W.; Park, J. B.; Cole, E. L.; Donnelly, D. J.; Bonacorsi, S. J.; Ewing, W. R.; Doyle, A. G.
J. Am. Chem. Soc. 2020. 142 (20), 9493-9500. DOI: 10.1021/jacs.0c03125
  • Group: Doyle at University of California, Los Angeles (UCLA) (previously Princeton University)
  • Catalyst: Iridium (photocatalyst)
  • Model: H150 Blue, PR160-440

Figure S14. Photocatalytic Radiochemical Fluorination Setup and Apparatus.
J. Am. Chem. Soc. 2020. 142 (20), 9493-9500. DOI: 10.1021/jacs.0c03125

8.

Exploiting Imine Photochemistry for Masked N-Centered Radical Reactivity

Staveness, D.; Collins, J. L.; McAtee, R. C.; Stephenson, C. R. J.
Angew. Chem. Int. Ed. 2019. 58, 19000. DOI: 10.26434/chemrxiv.7390421.v1
This content is an early or alternative research output and has not been peer-reviewed at the time of posting.
  • Group: Stephenson at University of Michigan
  • Model: PR160-390

Figure S2. Full Apparatus. Top: Generic schematic of flow apparatus; Middle: Full apparatus with key parts labeled; Bottom: Apparatus in use (note: pump currently displaying mL/min flow rate; reactions actually ran at 38.2 L/min; calibration of this instrument determined that the 38.2 L/min setting was equivalent to 47.5 L/min).
Angew. Chem. Int. Ed. 2019. 58, 19000. DOI: 10.26434/chemrxiv.7390421.v1
This content is an early or alternative research output and has not been peer-reviewed at the time of posting.

9.

Regiodivergent Photocyclization of Dearomatized Acylphloroglucinols: Asymmetric Syntheses of (−)-Nemorosone and (−)-6-epi-Garcimultiflorone A

Wen, S.; Boyce, J. H.; Kandappa, S. K.; Sivaguru, J.; Porco, J. A.
J. Am. Chem. Soc. 2019. 141 (28), 11315-11321. DOI: 10.1021/jacs.9b05600
  • Group: Porco at Boston University
  • Model: PR160-390

Figure S2. Temperature-controlled flow photoreactor II.
J. Am. Chem. Soc. 2019. 141 (28), 11315-11321. DOI: 10.1021/jacs.9b05600

10.

Photoredox Iridium–Nickel Dual-Catalyzed Decarboxylative Arylation Cross-Coupling: From Batch to Continuous Flow via Self-Optimizing Segmented Flow Reactor

Hsieh, H.-W.; Coley, C. W.; Baumgartner, L. M.; Jensen, K. F.; obinson, R. I.
Org. Process Res. Dev. 2018. 22 (4), 542-550. DOI: 10.1021/acs.oprd.8b00018